Question #149879
Solve the simultaneous equation
dx/(x-y)y^2 = dy/-(x-y)x^2 = dz/z(x^2+y^2)
1
Expert's answer
2020-12-15T02:32:20-0500

Given equations are,

dx(xy)y2=dy(xy)x2=dzz(x2+y2)\frac{dx}{(x-y)y^2} = \frac{dy}{-(x-y)x^2} = \frac{dz}{z(x^2+y^2)}


Taking first two,

dx(xy)y2=dy(xy)x2\frac{dx}{(x-y)y^2} = \frac{dy}{-(x-y)x^2}


dxy2=dyx2\frac{dx}{y^2} = \frac{dy}{-x^2}


Integrating both sides , we get

x2dx=y2dy\int -x^2dx = \int y^2dy


y3=x3+ky^3 = -x^3 + k (1)

then, y=(kx3)1/3y = (k-x^3 )^{1/3}


Taking first and last part,

dx(xy)y2=dzz(x2+y2)\frac{dx}{(x-y)y^2} = \frac{dz}{z(x^2+y^2)}


Putting value of y, we get,

(x2+y2)y2xy3dx=1zdz\frac{(x^2+y^2)}{y^2x-y^3}dx = \frac{1}{z}dz



(x2+(kx3)2/3)(kx3)2/3x(kx3)dx=1zdz\frac{(x^2+(k-x^3)^{2/3})}{(k-x^3)^{2/3}x-(k-x^3)}dx = \frac{1}{z}dz

Now integrating both sides, we get


16((3x2(kx3k2x3)(2/3)2F1(23,23;53;x3(k2x3)(kx3)(2/3))+2log(2x3k)+2log(1x(kx31)(1/3))23tan1(2x(kx31)1/3+13)log(x(kx31)1/3+x2(kx31)2/3+1))+C=lnz\frac{1}{6} (-\frac{(3 x^2 (\frac{k - x^3}{k - 2 x^3})^{(2/3)} 2^{F1(\frac{2}{3}, \frac{2}{3}; \frac{5}{3}; -\frac{x^3}{(k - 2 x^3)}}} {(k - x^3)^(2/3)} ) + 2 log(2 x^3 - k) + 2 log(1 - \frac{x}{(k x^3 - 1)^{(1/3)}}) - 2 \sqrt{3} tan^{-1}(\frac{\frac{2 x}{(k x^3 - 1)^{1/3}} + 1}{\sqrt{3}}) - log(\frac{x}{(k x^3 - 1)^{1/3} }+ \frac{x^2}{(k x^3 - 1)^{2/3}} + 1)) + C = lnz


Where 2F1(a,b;c;x)2^{F_1(a,b;c;x )} is the hypergeometric function


*Integration is done by online calculator as solution by hand is not possible for the differential equation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS