Given equations are,
d x ( x − y ) y 2 = d y − ( x − y ) x 2 = d z z ( x 2 + y 2 ) \frac{dx}{(x-y)y^2} = \frac{dy}{-(x-y)x^2} = \frac{dz}{z(x^2+y^2)} ( x − y ) y 2 d x = − ( x − y ) x 2 d y = z ( x 2 + y 2 ) d z
Taking first two,
d x ( x − y ) y 2 = d y − ( x − y ) x 2 \frac{dx}{(x-y)y^2} = \frac{dy}{-(x-y)x^2} ( x − y ) y 2 d x = − ( x − y ) x 2 d y
d x y 2 = d y − x 2 \frac{dx}{y^2} = \frac{dy}{-x^2} y 2 d x = − x 2 d y
Integrating both sides , we get
∫ − x 2 d x = ∫ y 2 d y \int -x^2dx = \int y^2dy ∫ − x 2 d x = ∫ y 2 d y
y 3 = − x 3 + k y^3 = -x^3 + k y 3 = − x 3 + k (1)
then, y = ( k − x 3 ) 1 / 3 y = (k-x^3 )^{1/3} y = ( k − x 3 ) 1/3
Taking first and last part,
d x ( x − y ) y 2 = d z z ( x 2 + y 2 ) \frac{dx}{(x-y)y^2} = \frac{dz}{z(x^2+y^2)} ( x − y ) y 2 d x = z ( x 2 + y 2 ) d z
Putting value of y, we get,
( x 2 + y 2 ) y 2 x − y 3 d x = 1 z d z \frac{(x^2+y^2)}{y^2x-y^3}dx = \frac{1}{z}dz y 2 x − y 3 ( x 2 + y 2 ) d x = z 1 d z
( x 2 + ( k − x 3 ) 2 / 3 ) ( k − x 3 ) 2 / 3 x − ( k − x 3 ) d x = 1 z d z \frac{(x^2+(k-x^3)^{2/3})}{(k-x^3)^{2/3}x-(k-x^3)}dx = \frac{1}{z}dz ( k − x 3 ) 2/3 x − ( k − x 3 ) ( x 2 + ( k − x 3 ) 2/3 ) d x = z 1 d z
Now integrating both sides, we get
1 6 ( − ( 3 x 2 ( k − x 3 k − 2 x 3 ) ( 2 / 3 ) 2 F 1 ( 2 3 , 2 3 ; 5 3 ; − x 3 ( k − 2 x 3 ) ( k − x 3 ) ( 2 / 3 ) ) + 2 l o g ( 2 x 3 − k ) + 2 l o g ( 1 − x ( k x 3 − 1 ) ( 1 / 3 ) ) − 2 3 t a n − 1 ( 2 x ( k x 3 − 1 ) 1 / 3 + 1 3 ) − l o g ( x ( k x 3 − 1 ) 1 / 3 + x 2 ( k x 3 − 1 ) 2 / 3 + 1 ) ) + C = l n z \frac{1}{6} (-\frac{(3 x^2 (\frac{k - x^3}{k - 2 x^3})^{(2/3)} 2^{F1(\frac{2}{3}, \frac{2}{3}; \frac{5}{3}; -\frac{x^3}{(k - 2 x^3)}}} {(k - x^3)^(2/3)} ) + 2 log(2 x^3 - k) + 2 log(1 - \frac{x}{(k x^3 - 1)^{(1/3)}}) - 2 \sqrt{3} tan^{-1}(\frac{\frac{2 x}{(k x^3 - 1)^{1/3}} + 1}{\sqrt{3}}) - log(\frac{x}{(k x^3 - 1)^{1/3} }+ \frac{x^2}{(k x^3 - 1)^{2/3}} + 1)) + C = lnz 6 1 ( − ( k − x 3 ) ( 2/3 ) ( 3 x 2 ( k − 2 x 3 k − x 3 ) ( 2/3 ) 2 F 1 ( 3 2 , 3 2 ; 3 5 ; − ( k − 2 x 3 ) x 3 ) + 2 l o g ( 2 x 3 − k ) + 2 l o g ( 1 − ( k x 3 − 1 ) ( 1/3 ) x ) − 2 3 t a n − 1 ( 3 ( k x 3 − 1 ) 1/3 2 x + 1 ) − l o g ( ( k x 3 − 1 ) 1/3 x + ( k x 3 − 1 ) 2/3 x 2 + 1 )) + C = l n z
Where 2 F 1 ( a , b ; c ; x ) 2^{F_1(a,b;c;x )} 2 F 1 ( a , b ; c ; x ) is the hypergeometric function
*Integration is done by online calculator as solution by hand is not possible for the differential equation.
Comments