d2y/dx2 + d2u/dy2 = 0
0 < x < 2 , 0 < y < 1
u(x, 0) = sin πx , u(x, 1) = x/2
u(0, y) = sin πy , u(2, y) = y
1
Expert's answer
2020-12-25T10:12:26-0500
∂x2∂2u+∂y2∂2u=0Letu(x,y)=X(x)Y(y)X′′Y+XY′′=0,X′′Y=−XY′′X′′Y=−XY′′=KXX′′=−YY′′=KXX′′=K,YY′′=−KIfKis chosen to be positivesayK=λ2,thenX′′=λ2XX=Aeλx+Be−λxY′′=−λ2YY=Ccos(λy)+Dsin(λy)u(x,y)=(Aeλx+Be−λx)(Ccos(λy)+Dsin(λy))u(x,0)=C(Aeλx+Be−λx)=sin(πx)u(0,0)=C(A+B)=0u(0,y)=(A+B)(Ccos(λy)+Dsin(λy))=sin(πy)u(0,0)=C(A+B)=0C=0,A=−Bu(x,1)=(Aeλx+Be−λx)(Ccos(λ)+Dsin(λ))=2xu(0,1)=(A+B)(Ccos(λ)+Dsin(λ))=0(A+B)(Dsin(λ))=0We would not wantDto be zero,so we can forceλto produce a 0 termChoosingD=0would makeu=0so we must forcesin(λ)to be zeroi.e. chooseλ=nπwherenis a positive integersin(λ)=0,λ=nπu(2,y)=(Ae2λ+Be−2λ)(Ccos(λy)+Dsin(λy))=yu(2,0)=C(Ae2λ+Be−2λ)=0u(x,y)=(Aeλx−Ae−λx)(Dsin(λy))=AD(enπx−e−nπx)sin(λy)=2ADsinh(nπx)sin(nπy)=Esinh(nπx)sin(nπy)u(x,y)can be superposed as;u(x,y)=n=1∑∞Ensinh(nπx)sin(nπy)u(2,y)=yu(2,y)=n=1∑∞Ensinh(2nπ)sin(nπy)=n=1∑∞bnsin(nπy)Wherebn=Ensinh(2nπ)We have here a half-range Fourier sineseries representation of a functionu(2,y)defined over0<y<1,Extendingu(2,y)as aneven periodic function with period2andusing standard Fourier series theory givesbn=2∫01ysin(nπy)dy=2∫01yd(nπ−cos(nπy))=nπ−2ycos(nπy)∣∣01+nπ2∫01cos(nπy)dy=nπ−2cos(nπ)+nπ2⋅nπsin(nπy)∣∣01=nπ−2cos(nπ)+n2π22sin(nπ)Butsin(nπ)=0&cos(nπ)=(−1)n∀n∈Z+bn=−nπ2(−1)nEnsinh(2nπ)=−nπ2(−1)n∴En=−nπ(sinh(2nπ))2(−1)n∴u(x,y)=n=1∑∞nπ(sinh(2nπ))2(−1)n−1sinh(nπx)sin(nπy)
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments