Apply the method of variation of parameters to solve the following differential equation
d^2y/dx^2+ x^2/y=secnx , where n is a constant
1
Expert's answer
2020-12-15T19:43:53-0500
dx2d2yβ+n2y=sec(nx)The solution to the above equation isy=ycβ+ypβwhereycβis the complementary factor andypβ is the particular integralThe auxiliary equation ism2+n2=0(mβjn)(m+jn)β΄mβ=0=Β±jn{wherejis a complex number}βRecall that if the solution of the auxiliary equationof a second-order differential equation ism=Ξ±Β±jΞ²,the general solution isy=eΞ±x(C1βcosΞ²x+C2βsinΞ²x)β΄ycβ=C1βcos(nx)+C2βsin(nx)The Wronskian of the two solutions isW(x)=β£β£βcos(nx)dxdβ(cos(nx))βsin(nx)dxdβ(sin(nx))ββ£β£β=β£β£βcos(nx)βnsin(nx)βsin(nx)ncos(nx)ββ£β£ββ=ncos2(nx)+nsin2(nx)=n(cos2(nx)+sin2(nx))=nββ΄ Our particular solution will be given byypβ=V1β(x)cos(nx)+V2β(x)sin(nx)WhereV1β(x)=ββ«W(x)r(x)sin(nx)βdx,V2β(x)=β«W(x)r(x)cos(nx)βdxandV1β(x)β=ββ«W(x)r(x)sin(nx)βdx=ββ«nsec(nx)sin(nx)βdx=ββ«ntan(nx)βdx=βn2ln(sec(nx))β+CβV2β(x)β=β«W(x)r(x)cos(nx)βdx=β«nsec(nx)cos(nx)βdx=β«n1βdx=nxβ+CβThe constant terms of the integration can beignored since we are trying to find a non-constantsolution to the differential equationβ΄yβ=ycβ+ypβ=C1βcos(nx)+C2βsin(nx)βn21βln(sec(nx))cos(nx)+nxβsin(nx)β
Comments