Apply the method of variation of parameters to solve the following differential equation
d^2y/dx^2+ x^2/y=secnx , where n is a constant
1
Expert's answer
2020-12-15T19:43:53-0500
dx2d2y+n2y=sec(nx)The solution to the above equation isy=yc+ypwhereycis the complementary factor andyp is the particular integralThe auxiliary equation ism2+n2=0(m−jn)(m+jn)∴m=0=±jn{wherejis a complex number}Recall that if the solution of the auxiliary equationof a second-order differential equation ism=α±jβ,the general solution isy=eαx(C1cosβx+C2sinβx)∴yc=C1cos(nx)+C2sin(nx)The Wronskian of the two solutions isW(x)=∣∣cos(nx)dxd(cos(nx))sin(nx)dxd(sin(nx))∣∣=∣∣cos(nx)−nsin(nx)sin(nx)ncos(nx)∣∣=ncos2(nx)+nsin2(nx)=n(cos2(nx)+sin2(nx))=n∴ Our particular solution will be given byyp=V1(x)cos(nx)+V2(x)sin(nx)WhereV1(x)=−∫W(x)r(x)sin(nx)dx,V2(x)=∫W(x)r(x)cos(nx)dxandV1(x)=−∫W(x)r(x)sin(nx)dx=−∫nsec(nx)sin(nx)dx=−∫ntan(nx)dx=−n2ln(sec(nx))+CV2(x)=∫W(x)r(x)cos(nx)dx=∫nsec(nx)cos(nx)dx=∫n1dx=nx+CThe constant terms of the integration can beignored since we are trying to find a non-constantsolution to the differential equation∴y=yc+yp=C1cos(nx)+C2sin(nx)−n21ln(sec(nx))cos(nx)+nxsin(nx)
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments