Question #149878
Solve
x^2y''- 2xy'+2(1+x^2)y=0 , x>0
1
Expert's answer
2020-12-14T10:21:52-0500

x2y2xy+2(1+x2)y=0,x>0x^2y''-2xy'+2(1+x^2)y=0, x>0\\

Divide through by x2x^2

y2xy+2(1+x2)x2y=0y''-\frac{2}{x}y'+\frac{2(1+x^2)}{x^2}y=0\\

For the equation of the form y+f(x)y+g(x)y=F(x).y''+f(x)y'+g(x)y=F(x). The substitution y=v.ef(x)2dxy=v.e^{- \int \frac{f(x)}{2}dx} is used.


So,

y=v.e22xdxy=v.e1xdxy=v.elnxy=vxy=v+xvy=2v+xvy=v.e^{- \int \frac{-2}{2x}dx}\\ y=v.e^{\int\frac{1}{x}dx}\\ y=v.e^{\ln x}\\ y=vx\\ y'=v+xv'\\ y''=2v'+xv''

Rewrite the equation

(2v+xv)2x(v+xv)+2(1+x2)x2vx=0xv+2v2vx2v+2(1+x2)xv=0xv2xv+2(1+x2)xv=0xv+2xv(1+1+x2)=0xv+2xv(x2)=0xv+2xv=0(2v'+xv'')-\frac{2}{x}(v+xv')+\frac{2(1+x^2)}{x^2}vx=0\\ xv''+2v'-\frac{2v}{x}-2v'+\frac{2(1+x^2)}{x}v=0\\ xv''-\frac{2}{x}v+\frac{2(1+x^2)}{x}v=0\\ xv''+\frac{2}{x}v(-1+1+x^2)=0\\ xv''+\frac{2}{x}v(x^2)=0\\ xv''+2xv=0

divide through by xx

v+2v=0v''+2v=0 .


The associated auxilliary equation to this is ;

m2+2m=0m(m+2)=0m=0,m=2m^2+2m=0\\ m(m+2)=0\\ m=0,m=-2

So,

v=A1e0.x+A2e2.xv=A1+A2e2xv=A_1e^{0.x}+A_2e^{-2.x}\\ v=A_1+A_2e^{-2x}


But v=yxv=\frac{y}{x}

yx=A1+A2e2xy=x(A1+A2e2x),x>0\frac{y}{x}=A_1+A_2e^{-2x}\\ y=x(A_1+A_2e^{-2x}) ,x>0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS