x2y′′−2xy′+2(1+x2)y=0,x>0
Divide through by x2
y′′−x2y′+x22(1+x2)y=0
For the equation of the form y′′+f(x)y′+g(x)y=F(x). The substitution y=v.e−∫2f(x)dx is used.
So,
y=v.e−∫2x−2dxy=v.e∫x1dxy=v.elnxy=vxy′=v+xv′y′′=2v′+xv′′
Rewrite the equation
(2v′+xv′′)−x2(v+xv′)+x22(1+x2)vx=0xv′′+2v′−x2v−2v′+x2(1+x2)v=0xv′′−x2v+x2(1+x2)v=0xv′′+x2v(−1+1+x2)=0xv′′+x2v(x2)=0xv′′+2xv=0
divide through by x
v′′+2v=0 .
The associated auxilliary equation to this is ;
m2+2m=0m(m+2)=0m=0,m=−2
So,
v=A1e0.x+A2e−2.xv=A1+A2e−2x
But v=xy
xy=A1+A2e−2xy=x(A1+A2e−2x),x>0
Comments