Given differential equation is z−px−qy−p2−q2=0
Then, f(x,y,z,p,q)=z−px−qy−p2−q2=0
−∂p∂fdx=−∂q∂fdy=−p∂p∂f−q∂q∂fdz=∂x∂f+p∂z∂fdp=∂y∂f+q∂z∂fdq
Then,
∂p∂f=−(x+2p), ∂q∂f=−(y+2q), ∂x∂f=−p , ∂y∂f=−q , ∂z∂f=1
Putting values, we get,
x+2pdx=y+2qdy=p(x+2p)+q(y+2q)dz=−p+pdp=−q+qdq
x+2pdx=y+2qdy=px+qy+2p2+2q2dz=0dp=0dq
Taking second last term, dp=0⟹p=a (1)
taking last term, dq=0⟹q=b (2)
Then, dz=pdx+qdy=adx+bdy
integrating both sides, z=ax+by+c (3)
Now, equation will be,
ax+by+c=ax+by+a2+b2
⟹c=a2+b2
Hence, z=ax+by+a2+b2
Comments