y(x)=n=0∑∞anxn
y′(x)=n=1∑∞nanxn−1
y′′(x)=n=2∑∞n(n−1)anxn−2
n=2∑∞n(n−1)anxn−2+xn=1∑∞nanxn−1+(x2+2)n=0∑∞anxn=0
n=2∑∞n(n−1)anxn−2+n=1∑∞nanxn+n=0∑∞anxn+2+n=0∑∞2anxn=0
n=0∑∞(n+2)(n+1)an+2xn+n=1∑∞nanxn+n=0∑∞anxn+2+n=0∑∞2anxn=0
n=0∑∞(n+2)(n+1)an+2xn+n=1∑∞nanxn+n=2∑∞an−2xn+n=0∑∞2anxn=0
2a0+3a1x+2a2+6a3x+n=2∑∞[(n+2)(n+1)an+2+nan+an−2+2an]xn=0
n=0⟹2a2+2a0=0⟹a0=−a2
n=1⟹2a2+6a3x+a1x+2a0+2a1x=0⟹6a3+3a1=0
a1=−2a3
For n=2,3,4,... :
(n+2)(n+1)an+2+nan+an−2+2an=0
(n+2)(n+1)an+2+(n+2)an+an−2=0
an+2=−(n+1)(n+2)an−2+(n+2)an
Answer:
y(x)=a0+a1x−a0x2−2a1x3−12a0+4a2x4+...
Comments