Question #150268
y"+xy'+(x^2 +2)y=0
1
Expert's answer
2020-12-17T11:49:12-0500

y(x)=n=0anxny(x)=\displaystyle\sum_{n=0}^{\infin}a_nx^n

y(x)=n=1nanxn1y'(x)=\displaystyle\sum_{n=1}^{\infin}na_nx^{n-1}

y(x)=n=2n(n1)anxn2y''(x)=\displaystyle\sum_{n=2}^{\infin}n(n-1)a_nx^{n-2}


n=2n(n1)anxn2+xn=1nanxn1+(x2+2)n=0anxn=0\displaystyle\sum_{n=2}^{\infin}n(n-1)a_nx^{n-2}+x\displaystyle\sum_{n=1}^{\infin}na_nx^{n-1}+(x^2+2)\displaystyle\sum_{n=0}^{\infin}a_nx^n=0

n=2n(n1)anxn2+n=1nanxn+n=0anxn+2+n=02anxn=0\displaystyle\sum_{n=2}^{\infin}n(n-1)a_nx^{n-2}+\displaystyle\sum_{n=1}^{\infin}na_nx^{n}+\displaystyle\sum_{n=0}^{\infin}a_nx^{n+2}+\displaystyle\sum_{n=0}^{\infin}2a_nx^n=0

n=0(n+2)(n+1)an+2xn+n=1nanxn+n=0anxn+2+n=02anxn=0\displaystyle\sum_{n=0}^{\infin}(n+2)(n+1)a_{n+2}x^{n}+\displaystyle\sum_{n=1}^{\infin}na_nx^{n}+\displaystyle\sum_{n=0}^{\infin}a_nx^{n+2}+\displaystyle\sum_{n=0}^{\infin}2a_nx^n=0

n=0(n+2)(n+1)an+2xn+n=1nanxn+n=2an2xn+n=02anxn=0\displaystyle\sum_{n=0}^{\infin}(n+2)(n+1)a_{n+2}x^{n}+\displaystyle\sum_{n=1}^{\infin}na_nx^{n}+\displaystyle\sum_{n=2}^{\infin}a_{n-2}x^{n}+\displaystyle\sum_{n=0}^{\infin}2a_nx^n=0

2a0+3a1x+2a2+6a3x+n=2[(n+2)(n+1)an+2+nan+an2+2an]xn=02a_0+3a_1x+2a_2+6a_3x+\displaystyle\sum_{n=2}^{\infin}[(n+2)(n+1)a_{n+2}+na_n+a_{n-2}+2a_n]x^{n}=0


n=0    2a2+2a0=0    a0=a2n=0\implies 2a_2+2a_0=0\implies a_0=-a_2

n=1    2a2+6a3x+a1x+2a0+2a1x=0    6a3+3a1=0n=1\implies 2a_2+6a_3x+a_1x+2a_0+2a_1x=0\implies 6a_3+3a_1=0

a1=2a3a_1=-2a_3


For n=2,3,4,...n=2,3,4,... :

(n+2)(n+1)an+2+nan+an2+2an=0(n+2)(n+1)a_{n+2}+na_n+a_{n-2}+2a_n=0

(n+2)(n+1)an+2+(n+2)an+an2=0(n+2)(n+1)a_{n+2}+(n+2)a_n+a_{n-2}=0

an+2=an2+(n+2)an(n+1)(n+2)a_{n+2}=-\frac{a_{n-2}+(n+2)a_n}{(n+1)(n+2)}


Answer:

y(x)=a0+a1xa0x2a12x3a0+4a212x4+...y(x)=a_0+a_1x-a_0x^2-\frac{a_1}{2}x^3-\frac{a_0+4a_2}{12}x^4+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS