y(3)−27y=e3x+e−3x
First we solve the homogenous equation y(3)−27y=0
The characterisic equation is λ3−27=0, which has roots λ1=3,λ2=3e32iπ=−23+233i,λ3=3e3−2iπ=−23−233i
So the solution of y(3)−27y=0 is y=Ae3x+Be−23xcos233x+Ce−23xsin233x
Now we find partial solution of y(3)−27y=e3x+e−3x in form y=Vxe3x+We−3x
By the General Leibniz rule we have (xe3x)(3)=x(3)e3x+3x′′(e3x)′+3x′(e3x)′′+x(e3x)(3)=
=0+0+3⋅9e3x+27xe3x=27e3x+27xe3x
So y(3)−27y=27Ve3x+27Vxe3x−27We−3x−
−27Vxe3x−27We−3x=27Ve3x−54We−3x
Then 27V=−54W=1, that is V=271,W=−541
We obtain the general solution y=Ae3x+Be−23xcos233x+Ce−23xsin233x+
+271xe3x−541e−3x
Answer: Ae3x+Be−23xcos233x+Ce−23xsin233x+
+271xe3x−541e−3x
Comments