Question #150198
(D^3 - 27) = e^3x + e^-3x
1
Expert's answer
2020-12-11T09:47:04-0500

y(3)27y=e3x+e3xy^{(3)}-27y=e^{3x}+e^{-3x}

First we solve the homogenous equation y(3)27y=0y^{(3)}-27y=0

The characterisic equation is λ327=0\lambda^3-27=0, which has roots λ1=3,λ2=3e2iπ3=32+332i,λ3=3e2iπ3=32332i\lambda_1=3, \lambda_2=3e^\frac{2i\pi}{3}=-\frac{3}{2}+\frac{3\sqrt{3}}{2}i, \lambda_3=3e^\frac{-2i\pi}{3}=-\frac{3}{2}-\frac{3\sqrt{3}}{2}i

So the solution of y(3)27y=0y^{(3)}-27y=0 is y=Ae3x+Be32xcos332x+Ce32xsin332xy=Ae^{3x}+Be^{-\frac{3}{2}x}\cos\frac{3\sqrt{3}}{2}x+Ce^{-\frac{3}{2}x}\sin\frac{3\sqrt{3}}{2}x

Now we find partial solution of y(3)27y=e3x+e3xy^{(3)}-27y=e^{3x}+e^{-3x} in form y=Vxe3x+We3xy=Vxe^{3x}+We^{-3x}

By the General Leibniz rule we have (xe3x)(3)=x(3)e3x+3x(e3x)+3x(e3x)+x(e3x)(3)=(xe^{3x})^{(3)}=x^{(3)}e^{3x}+3x''(e^{3x})'+3x'(e^{3x})''+x(e^{3x})^{(3)}=

=0+0+39e3x+27xe3x=27e3x+27xe3x=0+0+3\cdot 9e^{3x}+27xe^{3x}=27e^{3x}+27xe^{3x}

So y(3)27y=27Ve3x+27Vxe3x27We3xy^{(3)}-27y=27Ve^{3x}+27Vxe^{3x}-27We^{-3x}-

27Vxe3x27We3x=27Ve3x54We3x-27Vxe^{3x}-27We^{-3x}=27Ve^{3x}-54We^{-3x}

Then 27V=54W=127V=-54W=1, that is V=127,W=154V=\frac{1}{27},W=-\frac{1}{54}

We obtain the general solution y=Ae3x+Be32xcos332x+Ce32xsin332x+y=Ae^{3x}+Be^{-\frac{3}{2}x}\cos\frac{3\sqrt{3}}{2}x+Ce^{-\frac{3}{2}x}\sin\frac{3\sqrt{3}}{2}x+

+127xe3x154e3x+\frac{1}{27}xe^{3x}-\frac{1}{54}e^{-3x}

Answer: Ae3x+Be32xcos332x+Ce32xsin332x+Ae^{3x}+Be^{-\frac{3}{2}x}\cos\frac{3\sqrt{3}}{2}x+Ce^{-\frac{3}{2}x}\sin\frac{3\sqrt{3}}{2}x+

+127xe3x154e3x+\frac{1}{27}xe^{3x}-\frac{1}{54}e^{-3x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS