y ( 3 ) − 27 y = e 3 x + e − 3 x y^{(3)}-27y=e^{3x}+e^{-3x} y ( 3 ) − 27 y = e 3 x + e − 3 x
First we solve the homogenous equation y ( 3 ) − 27 y = 0 y^{(3)}-27y=0 y ( 3 ) − 27 y = 0
The characterisic equation is λ 3 − 27 = 0 \lambda^3-27=0 λ 3 − 27 = 0 , which has roots λ 1 = 3 , λ 2 = 3 e 2 i π 3 = − 3 2 + 3 3 2 i , λ 3 = 3 e − 2 i π 3 = − 3 2 − 3 3 2 i \lambda_1=3, \lambda_2=3e^\frac{2i\pi}{3}=-\frac{3}{2}+\frac{3\sqrt{3}}{2}i, \lambda_3=3e^\frac{-2i\pi}{3}=-\frac{3}{2}-\frac{3\sqrt{3}}{2}i λ 1 = 3 , λ 2 = 3 e 3 2 iπ = − 2 3 + 2 3 3 i , λ 3 = 3 e 3 − 2 iπ = − 2 3 − 2 3 3 i
So the solution of y ( 3 ) − 27 y = 0 y^{(3)}-27y=0 y ( 3 ) − 27 y = 0 is y = A e 3 x + B e − 3 2 x cos 3 3 2 x + C e − 3 2 x sin 3 3 2 x y=Ae^{3x}+Be^{-\frac{3}{2}x}\cos\frac{3\sqrt{3}}{2}x+Ce^{-\frac{3}{2}x}\sin\frac{3\sqrt{3}}{2}x y = A e 3 x + B e − 2 3 x cos 2 3 3 x + C e − 2 3 x sin 2 3 3 x
Now we find partial solution of y ( 3 ) − 27 y = e 3 x + e − 3 x y^{(3)}-27y=e^{3x}+e^{-3x} y ( 3 ) − 27 y = e 3 x + e − 3 x in form y = V x e 3 x + W e − 3 x y=Vxe^{3x}+We^{-3x} y = V x e 3 x + W e − 3 x
By the General Leibniz rule we have ( x e 3 x ) ( 3 ) = x ( 3 ) e 3 x + 3 x ′ ′ ( e 3 x ) ′ + 3 x ′ ( e 3 x ) ′ ′ + x ( e 3 x ) ( 3 ) = (xe^{3x})^{(3)}=x^{(3)}e^{3x}+3x''(e^{3x})'+3x'(e^{3x})''+x(e^{3x})^{(3)}= ( x e 3 x ) ( 3 ) = x ( 3 ) e 3 x + 3 x ′′ ( e 3 x ) ′ + 3 x ′ ( e 3 x ) ′′ + x ( e 3 x ) ( 3 ) =
= 0 + 0 + 3 ⋅ 9 e 3 x + 27 x e 3 x = 27 e 3 x + 27 x e 3 x =0+0+3\cdot 9e^{3x}+27xe^{3x}=27e^{3x}+27xe^{3x} = 0 + 0 + 3 ⋅ 9 e 3 x + 27 x e 3 x = 27 e 3 x + 27 x e 3 x
So y ( 3 ) − 27 y = 27 V e 3 x + 27 V x e 3 x − 27 W e − 3 x − y^{(3)}-27y=27Ve^{3x}+27Vxe^{3x}-27We^{-3x}- y ( 3 ) − 27 y = 27 V e 3 x + 27 V x e 3 x − 27 W e − 3 x −
− 27 V x e 3 x − 27 W e − 3 x = 27 V e 3 x − 54 W e − 3 x -27Vxe^{3x}-27We^{-3x}=27Ve^{3x}-54We^{-3x} − 27 V x e 3 x − 27 W e − 3 x = 27 V e 3 x − 54 W e − 3 x
Then 27 V = − 54 W = 1 27V=-54W=1 27 V = − 54 W = 1 , that is V = 1 27 , W = − 1 54 V=\frac{1}{27},W=-\frac{1}{54} V = 27 1 , W = − 54 1
We obtain the general solution y = A e 3 x + B e − 3 2 x cos 3 3 2 x + C e − 3 2 x sin 3 3 2 x + y=Ae^{3x}+Be^{-\frac{3}{2}x}\cos\frac{3\sqrt{3}}{2}x+Ce^{-\frac{3}{2}x}\sin\frac{3\sqrt{3}}{2}x+ y = A e 3 x + B e − 2 3 x cos 2 3 3 x + C e − 2 3 x sin 2 3 3 x +
+ 1 27 x e 3 x − 1 54 e − 3 x +\frac{1}{27}xe^{3x}-\frac{1}{54}e^{-3x} + 27 1 x e 3 x − 54 1 e − 3 x
Answer: A e 3 x + B e − 3 2 x cos 3 3 2 x + C e − 3 2 x sin 3 3 2 x + Ae^{3x}+Be^{-\frac{3}{2}x}\cos\frac{3\sqrt{3}}{2}x+Ce^{-\frac{3}{2}x}\sin\frac{3\sqrt{3}}{2}x+ A e 3 x + B e − 2 3 x cos 2 3 3 x + C e − 2 3 x sin 2 3 3 x +
+ 1 27 x e 3 x − 1 54 e − 3 x +\frac{1}{27}xe^{3x}-\frac{1}{54}e^{-3x} + 27 1 x e 3 x − 54 1 e − 3 x
Comments