Question #150862
A second order homogenous differential equation with constant coefficient and polynomial
coefficient is given, apply Euler-Cauchy equation to solve the given differential equation by
using the provided initial value problem (IVP).
x^2 y'' +8y' +10y =0 y(1) = 0 , y'(1) = 2.5
1
Expert's answer
2020-12-14T20:03:53-0500

x2y+8xy+10y=0,y(1)=0,y(1)=2.5Lety=f(lnx),y=f(lnx)xy=f(lnx)x2f(lnx)x2f"(lnx)f(lnx)+8f(lnx)x×x+10f(lnx)=0f"(lnx)f(lnx)+8f(lnx)+10f(lnx)=0f"(lnx)+7f(lnx)+10f(lnx)=0Lett=lnxf"(t)+7f(t)+10f(t)=0The auxiliary equation ism2+7m+10=0(m+5)(m+2)=0m=2,5f(t)=Ae2t+Be5tis the general solutionf(lnx)=Ae2lnx+Be5lnxy(x)=f(lnx)=Ax2+Bx5y(1)=A+B=0y(x)=2Ax35Bx6y(1)=2A5B=52ButA=B2A+5A=523A=52A=56,B=56y(x)=56x256x5\displaystyle x^2 y'' +8xy' +10y =0,\,\, y(1) = 0,\,\, y'(1) = 2.5\\ \textsf{Let}\,\,y = f(\ln{x}), y' = \frac{f'(\ln{x})}{x}\\ y'' = \frac{f''(\ln{x})}{x^2} - \frac{f'(\ln{x})}{x^2}\\ f"(\ln{x}) - f'(\ln{x}) + \frac{8f'(\ln{x})}{x}\times x + 10f(\ln{x}) = 0\\ f"(\ln{x}) - f'(\ln{x}) + 8f'(\ln{x}) + 10f(\ln{x}) = 0\\ f"(\ln{x}) + 7f'(\ln{x}) + 10f(\ln{x}) = 0\\ \textsf{Let}\,\, t = \ln{x}\\ f"(t) + 7f'(t) + 10f(t) = 0\\ \textsf{The auxiliary equation is}\\ m^2 + 7m + 10 = 0\\ (m + 5)(m + 2) = 0\\ m = -2, -5\\ f(t) = Ae^{-2t} + Be^{-5t}\,\, \textsf{is the general solution}\\ f(\ln{x}) = Ae^{-2\ln{x}} + Be^{-5\ln{x}}\\ y(x) = f(\ln{x}) = \frac{A}{x^2} + \frac{B}{x^5}\\ y(1) = A + B = 0\\ y'(x) = -2\frac{A}{x^3} - 5\frac{B}{x^6}\\ y'(1) = -2A - 5B = \frac{5}{2}\\ \textsf{But}\,\, A = -B\\ -2A + 5A = \frac{5}{2}\\ 3A = \frac{5}{2}\\ A = \frac{5}{6}, B = -\frac{5}{6}\\ y(x) = \frac{5}{6x^2} - \frac{5}{6x^5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.12.20, 03:05

Dear Zohaib Ali, the answer was published.

Zohaib Ali
14.12.20, 07:29

plz show the answer anwer is not visible

LATEST TUTORIALS
APPROVED BY CLIENTS