x2y′′+8xy′+10y=0,y(1)=0,y′(1)=2.5Lety=f(lnx),y′=xf′(lnx)y′′=x2f′′(lnx)−x2f′(lnx)f"(lnx)−f′(lnx)+x8f′(lnx)×x+10f(lnx)=0f"(lnx)−f′(lnx)+8f′(lnx)+10f(lnx)=0f"(lnx)+7f′(lnx)+10f(lnx)=0Lett=lnxf"(t)+7f′(t)+10f(t)=0The auxiliary equation ism2+7m+10=0(m+5)(m+2)=0m=−2,−5f(t)=Ae−2t+Be−5tis the general solutionf(lnx)=Ae−2lnx+Be−5lnxy(x)=f(lnx)=x2A+x5By(1)=A+B=0y′(x)=−2x3A−5x6By′(1)=−2A−5B=25ButA=−B−2A+5A=253A=25A=65,B=−65y(x)=6x25−6x55
Comments
Dear Zohaib Ali, the answer was published.
plz show the answer anwer is not visible