Question #150896
Find the integral surface of the differential equation x(z+2)p+(xz+2yz+2y)q=z(z+1) passing through the curve x0= s^2, y0= 0 and z0 = 2s
1
Expert's answer
2020-12-17T18:57:22-0500

dxx(z+2)=dyxz+2yz+2y=dzz(z+1)\frac{dx}{x(z+2)}=\frac{dy}{xz+2yz+2y}=\frac{dz}{z(z+1)}


dxx(z+2)=dzz(z+1)\frac{dx}{x(z+2)}=\frac{dz}{z(z+1)}

dxx=(z+2)dzz(z+1)\frac{dx}{x}=\frac{(z+2)dz}{z(z+1)}

dxx=(z+2)dzz(z+1)\intop\frac{dx}{x}=\intop\frac{(z+2)dz}{z(z+1)}

(z+2)dzz(z+1)=dzz+1+2dzz(z+1)\intop\frac{(z+2)dz}{z(z+1)}=\intop\frac{dz}{z+1}+2\intop\frac{dz}{z(z+1)}

1z(z+1)=Az+Bz+1\frac{1}{z(z+1)}=\frac{A}{z}+\frac{B}{z+1}

A(z+1)+Bz=1A(z+1)+Bz=1

A+B=0,A=1,B=1A+B=0, A=1, B=-1

1z(z+1)=1z1z+1\frac{1}{z(z+1)}=\frac{1}{z}-\frac{1}{z+1}


lnx=ln(z+1)+2lnz2ln(z+1)+lnc1lnx=ln(z+1)+2lnz-2ln(z+1)+lnc_1

lnx=ln(c1z2z+1)lnx=ln(\frac{c_1z^2}{z+1})


x(z+1)z2=c1\frac{x(z+1)}{z^2}=c_1



dyxz+2yz+2y=dzz(z+1)\frac{dy}{xz+2yz+2y}=\frac{dz}{z(z+1)}

(z+1)dyc1z3+2y(z+1)2=dzz(z+1)\frac{(z+1)dy}{c_1z^3+2y(z+1)^2}=\frac{dz}{z(z+1)}


dydzyz=c1z2(z+1)2\frac{dy}{dz}-\frac{y}{z}=\frac{c_1z^2}{(z+1)^2}

y=uv,y=uv+uvy=uv, y'=u'v+uv'

uv+u(vvz)=c1z2(z+1)2u'v+u(v'-\frac{v}{z})=\frac{c_1z^2}{(z+1)^2}

vvz=0    v=zv'-\frac{v}{z}=0\implies v=z

uv=uz=c1z2(z+1)2u'v=u'z=\frac{c_1z^2}{(z+1)^2}

dudz=c1z(z+1)2\frac{du}{dz}=\frac{c_1z}{(z+1)^2}

u=c1zdz(z+1)2u=c_1\intop\frac{zdz}{(z+1)^2}

z(z+1)2=Az+1+B(z+1)2\frac{z}{(z+1)^2}=\frac{A}{z+1}+\frac{B}{(z+1)^2}

A(z+1)+B=zA(z+1)+B=z

A=1,A+B=0,B=1A=1, A+B=0, B=-1

z(z+1)2=1z+11(z+1)2\frac{z}{(z+1)^2}=\frac{1}{z+1}-\frac{1}{(z+1)^2}

u=c1(1z+11(z+1)2)dz=c1(ln(z+1)+1z+1)+c2u=c_1\intop(\frac{1}{z+1}-\frac{1}{(z+1)^2})dz=c_1(ln(z+1)+\frac{1}{z+1})+c_2

y=uv=c1z(ln(z+1)+1z+1)+c2zy=uv=c_1z(ln(z+1)+\frac{1}{z+1})+c_2z

y=x(z+1)z(ln(z+1)+1z+1)+c2zy=\frac{x(z+1)}{z}(ln(z+1)+\frac{1}{z+1})+c_2z


yzx(z+1)z2(ln(z+1)+1z+1)=c2\frac{y}{z}-\frac{x(z+1)}{z^2}(ln(z+1)+\frac{1}{z+1})=c_2



For the curve (s2,0,2s)(s^2, 0, 2s) :

c1=s2(2s+1)4s2=2s+14c_1=\frac{s^2(2s+1)}{4s^2}=\frac{2s+1}{4}

c2=2s+14(ln(2s+1)+12s+1)c_2=-\frac{2s+1}{4}(ln(2s+1)+\frac{1}{2s+1})


c2=c1(ln(4c1)+14c1)=c1ln(4c1)14c_2=-c_1(ln(4c_1)+\frac{1}{4c_1})=-c_1ln(4c_1)-\frac{1}{4}


Substituting c1c_1 and c2c_2 we get the integral surface:


yzx(z+1)z2(ln(z+1)+1z+1)=x(z+1)z2ln(4x(z+1)z2)14\frac{y}{z}-\frac{x(z+1)}{z^2}(ln(z+1)+\frac{1}{z+1})=-\frac{x(z+1)}{z^2}ln(\frac{4x(z+1)}{z^2})-\frac{1}{4}

yzxz2=x(z+1)z2ln(4xz2)14\frac{y}{z}-\frac{x}{z^2}=-\frac{x(z+1)}{z^2}ln(\frac{4x}{z^2})-\frac{1}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS