x(z+2)dx=xz+2yz+2ydy=z(z+1)dz
x(z+2)dx=z(z+1)dz
xdx=z(z+1)(z+2)dz
∫xdx=∫z(z+1)(z+2)dz
∫z(z+1)(z+2)dz=∫z+1dz+2∫z(z+1)dz
z(z+1)1=zA+z+1B
A(z+1)+Bz=1
A+B=0,A=1,B=−1
z(z+1)1=z1−z+11
lnx=ln(z+1)+2lnz−2ln(z+1)+lnc1
lnx=ln(z+1c1z2)
z2x(z+1)=c1
xz+2yz+2ydy=z(z+1)dz
c1z3+2y(z+1)2(z+1)dy=z(z+1)dz
dzdy−zy=(z+1)2c1z2
y=uv,y′=u′v+uv′
u′v+u(v′−zv)=(z+1)2c1z2
v′−zv=0⟹v=z
u′v=u′z=(z+1)2c1z2
dzdu=(z+1)2c1z
u=c1∫(z+1)2zdz
(z+1)2z=z+1A+(z+1)2B
A(z+1)+B=z
A=1,A+B=0,B=−1
(z+1)2z=z+11−(z+1)21
u=c1∫(z+11−(z+1)21)dz=c1(ln(z+1)+z+11)+c2
y=uv=c1z(ln(z+1)+z+11)+c2z
y=zx(z+1)(ln(z+1)+z+11)+c2z
zy−z2x(z+1)(ln(z+1)+z+11)=c2
For the curve (s2,0,2s) :
c1=4s2s2(2s+1)=42s+1
c2=−42s+1(ln(2s+1)+2s+11)
c2=−c1(ln(4c1)+4c11)=−c1ln(4c1)−41
Substituting c1 and c2 we get the integral surface:
zy−z2x(z+1)(ln(z+1)+z+11)=−z2x(z+1)ln(z24x(z+1))−41
zy−z2x=−z2x(z+1)ln(z24x)−41
Comments