1) The given equation can be written as dxdy=−(x+4y+1)(x−y+1) ......(1)
Here the two lines x−y+1=0 and x+4y+1=0 intersect at the point (−1,0) .
We now transfer the origin by putting x=−1+X, y=0+Y ......(2)
This gives dx=dX and dy=dY
Therefore from (1) , we get dXdY=−(X+4Y)(X−Y) ........(3)
Put Y=vX. Then the equation (3) becomes
v+X.dXdv=−(1+4v)(1−v)
⟹X.dXdv=−(1+4v)(1−v)−v
⟹X.dXdv=−(1+4v)(1+4v2)
Separating the variables, we get
(1+4v2)(1+4v)dv+XdX=0
Now integrating we get,
∫(1+4v2)(1+4v)dv+∫XdX=0
⟹∫(1+4v2)1dv+∫(1+4v2)4vdv+∫XdX=0
⟹21.tan−1(2v)+21.log∣4v2+1∣+log∣X∣=log∣c∣ [where log∣c∣ is an integrating constant]
⟹tan−1(2v)+log∣4v2+1∣+2log∣X∣=2log∣c∣
⟹tan−1(2.XY)+log∣X24Y2+X2∣+log∣X∣2=log∣c∣2 [Putting the value of v=XY]
⟹tan−1(2.XY)+log∣4Y2+X2∣−log∣X2∣+log∣X∣2=log∣c∣2
⟹tan−1(2.XY)+log∣4Y2+X2∣=K(say)
⟹tan−1(x+12y)+log∣4y2+(x+1)2∣=K [ Putting the value X=x+1 and Y=y ]
Which is the required solution.
2) Here the two lines 6x−3y+2=0 and 2x−y−1=0 are parallel.
We see that the given equation may be written as dxdy=−[(2x−y)−13(2x−y)+2]. ........(1)
Put 2x−y=v in (1) , so that dxdv=2−dxdy
Hence we obtain from (1), 2−dxdv=−[v−13v+2]
⟹dxdv=[v−13v+2]+2
⟹dxdv=[v−15v]
Separating the variables we get , 5vv−1dv=dx .......(2)
Now integrating (2) we have , ∫5vv−1dv=∫dx
⟹51∫dv−51∫v1dv=∫dx
⟹51v−51log∣v∣=x+C [where C is an integrating constant]
⟹v−log∣v∣=5x+5C
⟹(2x−y)−log∣2x−y∣=5x+5C [ Putting v=2x−y ]
⟹log∣2x−y∣+(3x+y)=K (say)
Which is the required solution.
Comments