Question #151078
1.(x-y+1)dx+(x+4y+1)dy=0
2.(6x-3y+2)dx+(2x-y-1)dy=0
1
Expert's answer
2020-12-29T17:15:21-0500

1) The given equation can be written as dydx=(xy+1)(x+4y+1)\frac{dy}{dx}=-\frac{(x-y+1)}{(x+4y+1)} ......(1)

Here the two lines xy+1=0x-y+1=0 and x+4y+1=0x+4y+1=0 intersect at the point (1,0)(-1,0) .

We now transfer the origin by putting x=1+X,x=-1+X, y=0+Yy=0+Y ......(2)

This gives dx=dXdx=dX and dy=dYdy=dY

Therefore from (1) , we get dYdX=(XY)(X+4Y)\frac{dY}{dX}=-\frac{(X-Y)}{(X+4Y)} ........(3)

Put Y=vX.Y=vX. Then the equation (3) becomes

v+X.dvdX=(1v)(1+4v)v+X.\frac{dv}{dX}=-\frac{(1-v)}{(1+4v)}

    X.dvdX=(1v)(1+4v)v\implies X.\frac{dv}{dX}=-\frac{(1-v)}{(1+4v)}-v

    X.dvdX=(1+4v2)(1+4v)\implies X.\frac{dv}{dX}=-\frac{(1+4v^2)}{(1+4v)}

Separating the variables, we get

(1+4v)(1+4v2)dv+dXX=0\frac{(1+4v)}{(1+4v^2)}dv+\frac{dX}{X}=0

Now integrating we get,

(1+4v)(1+4v2)dv+dXX=0\intop\frac{(1+4v)}{(1+4v^2)}dv+\intop \frac{dX}{X}=0

    1(1+4v2)dv+4v(1+4v2)dv+dXX=0\implies \intop\frac{1}{(1+4v^2)}dv+\intop\frac{4v}{(1+4v^2)}dv+\intop \frac{dX}{X}=0

    12.tan1(2v)+12.log4v2+1+logX=logc\implies \frac {1}{2}.tan^{-1}(2v)+\frac{1}{2}.log|4v^2+1|+log|X|=log|c| [[where logclog|c| is an integrating constant]]

    tan1(2v)+log4v2+1+2logX=2logc\implies tan^{-1}(2v)+log|4v^2+1|+2log|X|=2log|c|

    tan1(2.YX)+log4Y2+X2X2+logX2=logc2\implies \tan^{-1}(2.\frac{Y}{X})+log|\frac{4Y^2+X^2}{X^2}|+log|X|^2=log|c|^2 [Putting the value of v=YXv=\frac{Y}{X}]

    tan1(2.YX)+log4Y2+X2logX2+logX2=logc2\implies \tan^{-1}(2.\frac{Y}{X})+log|{4Y^2+X^2}|-log|{X^2}|+log|X|^2=log|c|^2

    tan1(2.YX)+log4Y2+X2=K(say)\implies \tan^{-1}(2.\frac{Y}{X})+log|{4Y^2+X^2}|=K(say)

    tan1(2yx+1)+log4y2+(x+1)2=K\implies \tan^{-1}(\frac{2y}{x+1})+log|{4y^2+(x+1)^2}|=K [ Putting the value X=x+1X=x+1 and Y=yY=y ]

Which is the required solution.


2) Here the two lines 6x3y+2=06x-3y+2=0 and 2xy1=02x-y-1=0 are parallel.

We see that the given equation may be written as dydx=[3(2xy)+2(2xy)1].\frac{dy}{dx}=-[\frac{3(2x-y)+2}{(2x-y)-1}]. ........(1)

Put 2xy=v2x-y=v in (1) , so that dvdx=2dydx\frac{dv}{dx}=2-\frac{dy}{dx}

Hence we obtain from (1), 2dvdx=[3v+2v1]2-\frac{dv}{dx}=-[\frac{3v+2}{v-1}]

    dvdx=[3v+2v1]+2\implies \frac{dv}{dx}=[\frac{3v+2}{v-1}]+2

    dvdx=[5vv1]\implies \frac{dv}{dx}=[\frac{5v}{v-1}]

Separating the variables we get , v15vdv=dx\frac{v-1}{5v}dv=dx .......(2)

Now integrating (2) we have , v15vdv=dx\intop \frac{v-1}{5v}dv=\intop dx

    15dv151vdv=dx\implies \frac{1}{5}\intop dv- \frac{1}{5}\intop \frac{1}{v}dv=\intop dx

    15v15logv=x+C\implies \frac{1}{5}v-\frac{1}{5}log|v|=x+C [where CC is an integrating constant]

    vlogv=5x+5C\implies v-log|v|=5x+5C

    (2xy)log2xy=5x+5C\implies (2x-y)-log|2x-y|=5x+5C [ Putting v=2xyv=2x-y ]

    log2xy+(3x+y)=K\implies log|2x-y|+(3x+y)=K (say)

Which is the required solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS