Question #151391
Find a linear homogeneous differential equation, whose solutions are {e^x,e^-x,e^x-2e^-x}
1
Expert's answer
2020-12-20T18:22:59-0500

The DE is a differential equation withex2exas solutionAny DE that hasAex+Bexas solutionalso has its constituent termsAexandBexto be solutionssatisfying the DEWhereAandBare constants.The auxiliary equation is anequation with1,1as its roots.m=1,1The quadratic equation is(m1)(m+1)=0m21=0The homogeneous differentialequation isy"y=0\textsf{The DE is a differential equation with}\, e^x-2e^{-x}\\\textsf{as solution}\\ \textsf{Any DE that has}\, Ae^x + Be^{-x}\textsf{as solution}\\ \textsf{also has its constituent terms}\,\, Ae^x \\ \textsf{and}\,\, Be^{-x}\,\, \textsf{to be solutions}\\\textsf{satisfying the DE}\\ \textsf{Where}\,\, A \textsf{and}\,\, B\,\,\textsf{are constants.}\\ \textsf{The auxiliary equation is an}\\ \textsf{equation with}\,\, 1, -1 \,\,\textsf{as its roots.}\\ m = -1, 1\\ \textsf{The quadratic equation is}\\ (m - 1)(m + 1) = 0\\ m^2 - 1 = 0\\ \therefore \textsf{The homogeneous differential}\\\textsf{equation is}\\ y" - y = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS