Question #151329
Find the integrals of the Pfaffian differential equation
z(z-y)dx+z(x+z)dy+x(x+y)dz=0
1
Expert's answer
2020-12-20T16:50:35-0500

Given differential equation is

z(zy)dx+z(x+z)dy+x(x+y)dz=0z(z-y)dx +z(x+z)dy+x(x+y)dz = 0


Let X=z(zy)i^+z(x+z)j^+x(x+y)k^\vec{X} = z(z-y)\hat{i} +z(x+z)\hat{j}+x(x+y)\hat{k}

To check whether it is integral ,X.(×X)=0\vec{X} .(\nabla\times{\vec{X}}) = 0

Now, ×X=i^j^k^xyzz(zy)z(x+z)x(x+y)\nabla\times{\vec{X}} = \begin{vmatrix} \hat{i} & \hat{j} &\hat{k}\\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} &\frac{\partial }{\partial z}\\ z(z-y) & z(x+z) & x(x+y) \end{vmatrix}



×X=2zi^+2(x+yz)j^+(z+1)k^\nabla\times{\vec{X}} = -2z\hat{i} +2(x+y-z)\hat{j} + (z+1)\hat{k}

Now, X.(×X)=[z(zy)i^+z(x+z)j^+x(x+y)k^].[2zi^+2(x+yz)j^+(z+1)k^]=0\vec{X} .(\nabla\times{\vec{X}}) =[ z(z-y)\hat{i} +z(x+z)\hat{j}+x(x+y)\hat{k} ] .[-2z\hat{i} +2(x+y-z)\hat{j} + (z+1)\hat{k}] = 0

Hence it is integrable.


Let y=ux    dy=xdu+udxy = ux \implies dy = xdu + udx

and z=vx    dz=vdx+xdvz = vx \implies dz = vdx+xdv

Then partial differential equation will be reduced to the form

vx(vxux)dx+vx(x+vx)(udx+xdu)+x(x+ux)(vdx+xdv)=0vx(vx-ux)dx + vx(x+vx)(udx+xdu) + x(x+ux)(vdx+xdv) = 0


It can be further reduced to

dxx+du1+dvvdu(u+2v+vu)dv(u+2v+uv)=0\frac{dx}{x} + \frac{du}{1}+\frac{dv}{v}-\frac{du}{(u+2v+vu)}-\frac{dv}{(u+2v+uv)} = 0

Integrating it, we get


lnx+u+lnvln(2v+u(1+v))v+1ln(u+v(2+u))2+u=Clnx+u+lnv-\frac{ln(2v+u(1+v))}{v+1} -\frac{ln(u+v(2+u))}{2+u} = C

putting values of u and v,


lnz+yxln(2zx+yx(1+zx))v+1ln(yx+zx(2+u))2+yx=C=C(x+y+z)lnz+\frac{y}{x}-\frac{ln(2\frac{z}{x}+\frac{y}{x}(1+\frac{z}{x}))}{v+1} -\frac{ln(\frac{y}{x}+\frac{z}{x}(2+u))}{2+\frac{y}{x}} = C= C(x+y+z)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS