Given differential equation is
z(z−y)dx+z(x+z)dy+x(x+y)dz=0
Let X=z(z−y)i^+z(x+z)j^+x(x+y)k^
To check whether it is integral ,X.(∇×X)=0
Now, ∇×X=∣∣i^∂x∂z(z−y)j^∂y∂z(x+z)k^∂z∂x(x+y)∣∣
∇×X=−2zi^+2(x+y−z)j^+(z+1)k^
Now, X.(∇×X)=[z(z−y)i^+z(x+z)j^+x(x+y)k^].[−2zi^+2(x+y−z)j^+(z+1)k^]=0
Hence it is integrable.
Let y=ux⟹dy=xdu+udx
and z=vx⟹dz=vdx+xdv
Then partial differential equation will be reduced to the form
vx(vx−ux)dx+vx(x+vx)(udx+xdu)+x(x+ux)(vdx+xdv)=0
It can be further reduced to
xdx+1du+vdv−(u+2v+vu)du−(u+2v+uv)dv=0
Integrating it, we get
lnx+u+lnv−v+1ln(2v+u(1+v))−2+uln(u+v(2+u))=C
putting values of u and v,
lnz+xy−v+1ln(2xz+xy(1+xz))−2+xyln(xy+xz(2+u))=C=C(x+y+z)
Comments