Answer to Question #147265 in Differential Equations for Kiram

Question #147265
A string is stretched between two fixed points at a distance 2l cm and the points of the string are given initial velocities (v) is given by v(x, 0) = {kxl, 0<x<lk(2l−x)l, l<x<2l, x being the distance from an end point. Find the displacement of the string at any time.
1
Expert's answer
2020-12-02T01:51:07-0500

The displacement y(x,t) is given by the equation



"\\frac{\\delta^2y}{ \\delta t^2}=a^2 \\frac{\\delta^2y}{ \\delta x^2}------------(1)"

The suitable solution of (1) is given by

"y(x,t) = (A cos lx + B sin lx)(C cos lat + D sin lat) -------(2)"


The boundary conditions are

"(i)\\ y(0,t) = 0,\\ for\\ t\\ge0. \\\\\n(ii)\\ y(\u2113,t) ,\\ for\\ t\\ge0. \\\\\n(iii)\\ y(x,0)=0\\ for\\ all\\ 0<x<i\\\\\n(iv)\\ [\\frac{\\delta y}{\\delta t}]_{t=0}=g(x)= \\begin{cases}\n \\frac{kx}{l} & 0<x<l \\\\\n \\frac{k(2l-x)}{l} & l<x<2l\n \\end{cases}"

Using    (i) and (ii) in (2) , we get


"0 = A(Ccoslat + Dsinlat)" , for all "t \\ge 0."

Therefore,           "A = 0"


Hence equation (2) becomes

"y(x,t) = B sinlx(Ccoslat + Dsinlat) ------------ (3)"

Using (ii) in (3), we get

 

"0 = Bsinl\u2113 (Ccoslat+Dsinlat)" , for all  "t \\ge 0" , which gives "l\u2113 = n\\pi"

Hence, "l=\\frac{n \\pi}{\u2113}" , n being an integer.


Thus

"y(x,t)=Bsin \\frac{n \\pi x}{l}[Ccos \\frac{n \\pi at}{l}+Dsin \\frac{n \\pi at}{l}]-----------(4)"


Using (iii) in (4), we get

"0=Bsin \\frac{n \\pi x}{l}C"


Therefore, "C = 0"

Hence "y(x,t)=Bsin \\frac{n \\pi x}{l} \\cdot Dsin \\frac{n \\pi at}{l}=B_1sin \\frac{n \\pi x}{l} \\cdot Dsin \\frac{n \\pi at}{l}"

Where "B_1=BD"


The most general solution is


"y(x,t)=\\sum_{n=1}^\\infin B_nsin \\frac{n \\pi x}{l} \\cdot sin \\frac{n \\pi at}{l}---------(5)"


Differentiating (5) partially w.r.t t, we get


"\\frac{\\delta y}{\\delta t}=\\sum_{n=1}^\\infin B_nsin \\frac{n \\pi x}{l} cos \\frac{n \\pi at}{l} \\cdot \\frac{n \\pi a}{l}"


Using condition (iv) in the above equation, we get

"y_t(x,0)=g(x)= \\begin{cases}\n \\frac{kx}{l} & 0<x<l \\\\\n \\frac{2l-x}{l} & l<x<2l\n\\end{cases}"


Taking "\\frac{kx}{l},\\ 0<x<l" we get


"\\frac{kx}{l}=\\sum_{n=1}^\\infin B_n \\frac{n \\pi a}{l} \\cdot sin\\frac{n \\pi x}{l}\\\\ \ni.e\\ B_n \\frac{n \\pi a}{l}=\\frac{2}{l}\\int_0^1 f(x)\\cdot sin\\frac{n \\pi x}{l}dx\\\\\ni.e\\ B_n =\\frac{2}{n \\pi a}\\int_0^1 f(x)\\cdot sin\\frac{n \\pi x}{l}dx=\\frac{2}{n \\pi a}\\int_0^1 \\frac{kx}{l}\\cdot sin\\frac{n \\pi x}{l}dx= \\frac{2}{n \\pi a}\\int_0^1 \\frac{kx}{l}d[\\frac{-cos\\frac{n \\pi x}{l}}{\\frac{n \\pi x}{l}}]\\\\\n= \\frac{2}{n \\pi a}\\{\\frac{kx}{l}d[\\frac{-cos\\frac{n \\pi x}{l}}{\\frac{n \\pi x}{l}}]-\\frac{k}{l}[\\frac{-sin\\frac{n \\pi}{l}}{\\frac{n^2 \\pi^2 }{l}}]\\}=\\frac{2}{n \\pi a}\\{\\frac{-2cos\\ n\\pi+2}{\\frac{n^3 \\pi^3 }{l^3}}\\}=\\frac{2}{n \\pi a} \\cdot \\frac{2l^3}{n^3 \\pi^3}\\{1-cos\\ n\\pi\\}\\\\\ni.e\\ B_n =\\frac{4l^3}{n^4 \\pi^4 a}\\{1-(-1)^n\\}\\\\\nor\\\\\nB_n= \\begin{cases}\n \\frac{8l^3}{l} & if\\ n\\ is\\ odd \\\\\n 0 & if\\ n\\ is\\ even\n\\end{cases}\\\\\n\n\\therefore\\ solution\\ is\\\\\ny(x,t)=\\frac{8l^3}{n^4a}\\sum_{n=1}^\\infin \\frac{1}{(2n-1)^4}\\sin\\ \\frac{(2n-1)\\pi a t}{l}\\sin\\ \\frac{(2n-1)\\pi x}{l},\\ \\forall\\ 0<x<l--->Answer"


Taking "\\frac{k(2l-x)}{l},\\ l<x<2l" we get


"\\frac{2kl-kx}{l}=\\sum_{n=1}^\\infin B_n \\frac{n \\pi a}{2l} \\cdot sin\\frac{n \\pi x}{2l}\\\\ \ni.e\\ B_n \\frac{n \\pi a}{l}=\\frac{2}{l}\\int_l^{2l} g(x)\\cdot sin\\frac{n \\pi x}{2l}dx\\\\\ni.e\\ B_n =\\frac{2}{n \\pi a}\\int_l^{2l} g(x)\\cdot sin\\frac{n \\pi x}{2l}dx=\\frac{2}{n \\pi a}\\int_l^{2l} \\frac{2kl-kx}{l}\\cdot sin\\frac{n \\pi x}{2l}dx= \\frac{2}{n \\pi a}\\int_l^{2l} \\frac{2kl-kx}{l}d[\\frac{-cos\\frac{n \\pi x}{2l}}{\\frac{n \\pi x}{2l}}]\\\\\n= \\frac{2}{n \\pi a}\\{\\frac{2kl-kx}{l}d[\\frac{-cos\\frac{n \\pi x}{2l}}{\\frac{n \\pi x}{2l}}]-\\frac{2kl-k}{l}[\\frac{-sin\\frac{n \\pi}{2l}}{\\frac{n^2 \\pi^2 }{2l}}]\\}=\\frac{2}{n \\pi a}\\{\\frac{-2cos\\ n\\pi+2}{\\frac{n^3 \\pi^3 }{4l^3}}\\}=\\frac{2}{n \\pi a} \\cdot \\frac{8l^3}{n^3 \\pi^3}\\{1-cos\\ n\\pi\\}\\\\\ni.e\\ B_n =\\frac{16l^3}{n^4 \\pi^4 a}\\{1-(-1)^n\\}\\\\\nor\\\\\nB_n= \\begin{cases}\n \\frac{32l^3}{l} & if\\ n\\ is\\ odd \\\\\n 0 & if\\ n\\ is\\ even\n\\end{cases}\\\\\n\n\\therefore\\ solution\\ is\\\\\ny(x,t)=\\frac{32l^3}{n^4a}\\sum_{n=1}^\\infin \\frac{1}{(2n-1)^4}\\sin\\ \\frac{(2n-1)\\pi a t}{l}\\sin\\ \\frac{(2n-1)\\pi x}{l},\\ \\forall\\ l<x<2l-->Answer"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS