Question #147265
A string is stretched between two fixed points at a distance 2l cm and the points of the string are given initial velocities (v) is given by v(x, 0) = {kxl, 0<x<lk(2l−x)l, l<x<2l, x being the distance from an end point. Find the displacement of the string at any time.
1
Expert's answer
2020-12-02T01:51:07-0500

The displacement y(x,t) is given by the equation



δ2yδt2=a2δ2yδx2(1)\frac{\delta^2y}{ \delta t^2}=a^2 \frac{\delta^2y}{ \delta x^2}------------(1)

The suitable solution of (1) is given by

y(x,t)=(Acoslx+Bsinlx)(Ccoslat+Dsinlat)(2)y(x,t) = (A cos lx + B sin lx)(C cos lat + D sin lat) -------(2)


The boundary conditions are

(i) y(0,t)=0, for t0.(ii) y(,t), for t0.(iii) y(x,0)=0 for all 0<x<i(iv) [δyδt]t=0=g(x)={kxl0<x<lk(2lx)ll<x<2l(i)\ y(0,t) = 0,\ for\ t\ge0. \\ (ii)\ y(ℓ,t) ,\ for\ t\ge0. \\ (iii)\ y(x,0)=0\ for\ all\ 0<x<i\\ (iv)\ [\frac{\delta y}{\delta t}]_{t=0}=g(x)= \begin{cases} \frac{kx}{l} & 0<x<l \\ \frac{k(2l-x)}{l} & l<x<2l \end{cases}

Using    (i) and (ii) in (2) , we get


0=A(Ccoslat+Dsinlat)0 = A(Ccoslat + Dsinlat) , for all t0.t \ge 0.

Therefore,           A=0A = 0


Hence equation (2) becomes

y(x,t)=Bsinlx(Ccoslat+Dsinlat)(3)y(x,t) = B sinlx(Ccoslat + Dsinlat) ------------ (3)

Using (ii) in (3), we get

 

0=Bsinl(Ccoslat+Dsinlat)0 = Bsinlℓ (Ccoslat+Dsinlat) , for all  t0t \ge 0 , which gives l=nπlℓ = n\pi

Hence, l=nπl=\frac{n \pi}{ℓ} , n being an integer.


Thus

y(x,t)=Bsinnπxl[Ccosnπatl+Dsinnπatl](4)y(x,t)=Bsin \frac{n \pi x}{l}[Ccos \frac{n \pi at}{l}+Dsin \frac{n \pi at}{l}]-----------(4)


Using (iii) in (4), we get

0=BsinnπxlC0=Bsin \frac{n \pi x}{l}C


Therefore, C=0C = 0

Hence y(x,t)=BsinnπxlDsinnπatl=B1sinnπxlDsinnπatly(x,t)=Bsin \frac{n \pi x}{l} \cdot Dsin \frac{n \pi at}{l}=B_1sin \frac{n \pi x}{l} \cdot Dsin \frac{n \pi at}{l}

Where B1=BDB_1=BD


The most general solution is


y(x,t)=n=1Bnsinnπxlsinnπatl(5)y(x,t)=\sum_{n=1}^\infin B_nsin \frac{n \pi x}{l} \cdot sin \frac{n \pi at}{l}---------(5)


Differentiating (5) partially w.r.t t, we get


δyδt=n=1Bnsinnπxlcosnπatlnπal\frac{\delta y}{\delta t}=\sum_{n=1}^\infin B_nsin \frac{n \pi x}{l} cos \frac{n \pi at}{l} \cdot \frac{n \pi a}{l}


Using condition (iv) in the above equation, we get

yt(x,0)=g(x)={kxl0<x<l2lxll<x<2ly_t(x,0)=g(x)= \begin{cases} \frac{kx}{l} & 0<x<l \\ \frac{2l-x}{l} & l<x<2l \end{cases}


Taking kxl, 0<x<l\frac{kx}{l},\ 0<x<l we get


kxl=n=1Bnnπalsinnπxli.e Bnnπal=2l01f(x)sinnπxldxi.e Bn=2nπa01f(x)sinnπxldx=2nπa01kxlsinnπxldx=2nπa01kxld[cosnπxlnπxl]=2nπa{kxld[cosnπxlnπxl]kl[sinnπln2π2l]}=2nπa{2cos nπ+2n3π3l3}=2nπa2l3n3π3{1cos nπ}i.e Bn=4l3n4π4a{1(1)n}orBn={8l3lif n is odd0if n is even solution isy(x,t)=8l3n4an=11(2n1)4sin (2n1)πatlsin (2n1)πxl,  0<x<l>Answer\frac{kx}{l}=\sum_{n=1}^\infin B_n \frac{n \pi a}{l} \cdot sin\frac{n \pi x}{l}\\ i.e\ B_n \frac{n \pi a}{l}=\frac{2}{l}\int_0^1 f(x)\cdot sin\frac{n \pi x}{l}dx\\ i.e\ B_n =\frac{2}{n \pi a}\int_0^1 f(x)\cdot sin\frac{n \pi x}{l}dx=\frac{2}{n \pi a}\int_0^1 \frac{kx}{l}\cdot sin\frac{n \pi x}{l}dx= \frac{2}{n \pi a}\int_0^1 \frac{kx}{l}d[\frac{-cos\frac{n \pi x}{l}}{\frac{n \pi x}{l}}]\\ = \frac{2}{n \pi a}\{\frac{kx}{l}d[\frac{-cos\frac{n \pi x}{l}}{\frac{n \pi x}{l}}]-\frac{k}{l}[\frac{-sin\frac{n \pi}{l}}{\frac{n^2 \pi^2 }{l}}]\}=\frac{2}{n \pi a}\{\frac{-2cos\ n\pi+2}{\frac{n^3 \pi^3 }{l^3}}\}=\frac{2}{n \pi a} \cdot \frac{2l^3}{n^3 \pi^3}\{1-cos\ n\pi\}\\ i.e\ B_n =\frac{4l^3}{n^4 \pi^4 a}\{1-(-1)^n\}\\ or\\ B_n= \begin{cases} \frac{8l^3}{l} & if\ n\ is\ odd \\ 0 & if\ n\ is\ even \end{cases}\\ \therefore\ solution\ is\\ y(x,t)=\frac{8l^3}{n^4a}\sum_{n=1}^\infin \frac{1}{(2n-1)^4}\sin\ \frac{(2n-1)\pi a t}{l}\sin\ \frac{(2n-1)\pi x}{l},\ \forall\ 0<x<l--->Answer


Taking k(2lx)l, l<x<2l\frac{k(2l-x)}{l},\ l<x<2l we get


2klkxl=n=1Bnnπa2lsinnπx2li.e Bnnπal=2ll2lg(x)sinnπx2ldxi.e Bn=2nπal2lg(x)sinnπx2ldx=2nπal2l2klkxlsinnπx2ldx=2nπal2l2klkxld[cosnπx2lnπx2l]=2nπa{2klkxld[cosnπx2lnπx2l]2klkl[sinnπ2ln2π22l]}=2nπa{2cos nπ+2n3π34l3}=2nπa8l3n3π3{1cos nπ}i.e Bn=16l3n4π4a{1(1)n}orBn={32l3lif n is odd0if n is even solution isy(x,t)=32l3n4an=11(2n1)4sin (2n1)πatlsin (2n1)πxl,  l<x<2l>Answer\frac{2kl-kx}{l}=\sum_{n=1}^\infin B_n \frac{n \pi a}{2l} \cdot sin\frac{n \pi x}{2l}\\ i.e\ B_n \frac{n \pi a}{l}=\frac{2}{l}\int_l^{2l} g(x)\cdot sin\frac{n \pi x}{2l}dx\\ i.e\ B_n =\frac{2}{n \pi a}\int_l^{2l} g(x)\cdot sin\frac{n \pi x}{2l}dx=\frac{2}{n \pi a}\int_l^{2l} \frac{2kl-kx}{l}\cdot sin\frac{n \pi x}{2l}dx= \frac{2}{n \pi a}\int_l^{2l} \frac{2kl-kx}{l}d[\frac{-cos\frac{n \pi x}{2l}}{\frac{n \pi x}{2l}}]\\ = \frac{2}{n \pi a}\{\frac{2kl-kx}{l}d[\frac{-cos\frac{n \pi x}{2l}}{\frac{n \pi x}{2l}}]-\frac{2kl-k}{l}[\frac{-sin\frac{n \pi}{2l}}{\frac{n^2 \pi^2 }{2l}}]\}=\frac{2}{n \pi a}\{\frac{-2cos\ n\pi+2}{\frac{n^3 \pi^3 }{4l^3}}\}=\frac{2}{n \pi a} \cdot \frac{8l^3}{n^3 \pi^3}\{1-cos\ n\pi\}\\ i.e\ B_n =\frac{16l^3}{n^4 \pi^4 a}\{1-(-1)^n\}\\ or\\ B_n= \begin{cases} \frac{32l^3}{l} & if\ n\ is\ odd \\ 0 & if\ n\ is\ even \end{cases}\\ \therefore\ solution\ is\\ y(x,t)=\frac{32l^3}{n^4a}\sum_{n=1}^\infin \frac{1}{(2n-1)^4}\sin\ \frac{(2n-1)\pi a t}{l}\sin\ \frac{(2n-1)\pi x}{l},\ \forall\ l<x<2l-->Answer

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS