The displacement y(x,t) is given by the equation
δt2δ2y=a2δx2δ2y−−−−−−−−−−−−(1)The suitable solution of (1) is given by
y(x,t)=(Acoslx+Bsinlx)(Ccoslat+Dsinlat)−−−−−−−(2)
The boundary conditions are
(i) y(0,t)=0, for t≥0.(ii) y(ℓ,t), for t≥0.(iii) y(x,0)=0 for all 0<x<i(iv) [δtδy]t=0=g(x)={lkxlk(2l−x)0<x<ll<x<2l
Using (i) and (ii) in (2) , we get
0=A(Ccoslat+Dsinlat) , for all t≥0.
Therefore, A=0
Hence equation (2) becomes
y(x,t)=Bsinlx(Ccoslat+Dsinlat)−−−−−−−−−−−−(3)
Using (ii) in (3), we get
0=Bsinlℓ(Ccoslat+Dsinlat) , for all t≥0 , which gives lℓ=nπ
Hence, l=ℓnπ , n being an integer.
Thus
y(x,t)=Bsinlnπx[Ccoslnπat+Dsinlnπat]−−−−−−−−−−−(4)
Using (iii) in (4), we get
0=BsinlnπxC
Therefore, C=0
Hence y(x,t)=Bsinlnπx⋅Dsinlnπat=B1sinlnπx⋅Dsinlnπat
Where B1=BD
The most general solution is
y(x,t)=∑n=1∞Bnsinlnπx⋅sinlnπat−−−−−−−−−(5)
Differentiating (5) partially w.r.t t, we get
δtδy=∑n=1∞Bnsinlnπxcoslnπat⋅lnπa
Using condition (iv) in the above equation, we get
yt(x,0)=g(x)={lkxl2l−x0<x<ll<x<2l
Taking lkx, 0<x<l we get
lkx=∑n=1∞Bnlnπa⋅sinlnπxi.e Bnlnπa=l2∫01f(x)⋅sinlnπxdxi.e Bn=nπa2∫01f(x)⋅sinlnπxdx=nπa2∫01lkx⋅sinlnπxdx=nπa2∫01lkxd[lnπx−coslnπx]=nπa2{lkxd[lnπx−coslnπx]−lk[ln2π2−sinlnπ]}=nπa2{l3n3π3−2cos nπ+2}=nπa2⋅n3π32l3{1−cos nπ}i.e Bn=n4π4a4l3{1−(−1)n}orBn={l8l30if n is oddif n is even∴ solution isy(x,t)=n4a8l3∑n=1∞(2n−1)41sin l(2n−1)πatsin l(2n−1)πx, ∀ 0<x<l−−−>Answer
Taking lk(2l−x), l<x<2l we get
l2kl−kx=∑n=1∞Bn2lnπa⋅sin2lnπxi.e Bnlnπa=l2∫l2lg(x)⋅sin2lnπxdxi.e Bn=nπa2∫l2lg(x)⋅sin2lnπxdx=nπa2∫l2ll2kl−kx⋅sin2lnπxdx=nπa2∫l2ll2kl−kxd[2lnπx−cos2lnπx]=nπa2{l2kl−kxd[2lnπx−cos2lnπx]−l2kl−k[2ln2π2−sin2lnπ]}=nπa2{4l3n3π3−2cos nπ+2}=nπa2⋅n3π38l3{1−cos nπ}i.e Bn=n4π4a16l3{1−(−1)n}orBn={l32l30if n is oddif n is even∴ solution isy(x,t)=n4a32l3∑n=1∞(2n−1)41sin l(2n−1)πatsin l(2n−1)πx, ∀ l<x<2l−−>Answer
Comments