Question #146751
Using the method of product solution,solve ∂u/∂x= 2∂u/∂x+u where u(x,0)=6e^-3x
1
Expert's answer
2020-11-26T13:40:04-0500

u(x,t)=X(x)T(t)ux(x,t)=(u(x,t))x=X(x)T(t),ut(x,t)=(u(x,t))t=X(x)T(t)ux(x,t)=2ut(x,t)+X(x)T(t)X(x)T(t)=2X(x)T(t)+X(x)T(t)(X(x)X(x))T(t)=2X(x)T(t)X(x)X(x)X(x)=2T(t)T(t)X(x)X(x)1=2T(t)T(t)=kX(x)X(x)1=k,X(x)X(x)=k+1X(x)X(x)dx=k+1dxlog(X(x))=(k+1)x+c1X(x)=c2e(k+1)xT(t)T(t)dt=k2dtlog(T(t))=kt2+c2T(t)=c3ekt2    u(x,t)=X(x)T(t)=c2e(k+1)x×c3ekt2=cek(x+t2)+xu(x,t)=cek(x+t2)+x,u(x,0)=cekx+x=ce(k+1)x=6e3xc=6,k+1=3,k=4u(x,t)=6e4(x+t2)+x=6e(3x+2t)\displaystyle u(x, t) = X(x) T(t)\\ u_x(x, t) = \frac{\partial(u(x, t))}{\partial x} =X'(x)T(t),\\ u_t(x, t) = \frac{\partial(u(x, t))}{\partial t} = X(x)T'(t)\\ u_x(x, t) = 2u_t(x, t) + X(x) T(t)\\ X'(x)T(t) = 2X(x)T'(t) + X(x) T(t)\\ (X'(x) - X(x))T(t) = 2X(x)T'(t)\\ \frac{X'(x) - X(x)}{X(x)} = 2\frac{T'(t)}{T(t)}\\ \frac{X'(x)}{X(x)} - 1 = 2\frac{T'(t)}{T(t)} = k\\ \frac{X'(x)}{X(x)} - 1 = k, \frac{X'(x)}{X(x)} = k + 1\\ \int \frac{X'(x)}{X(x)}\,\mathrm{d}x = \int k + 1 \,\mathrm{d}x\\ \log(X(x)) = (k + 1)x + c_1\\ X(x) = c_2e^{(k + 1)x}\\ \int\frac{T'(t)}{T(t)}\,\mathrm{d}t = \frac{k}{2}\,\mathrm{d}t\\ \log(T(t)) = \frac{kt}{2} + c_2\\ T(t) = c_3e^{\frac{kt}{2}}\\ \implies u(x, t) = X(x) T(t) = c_2e^{(k + 1)x} \times c_3e^{\frac{kt}{2}}= ce^{k\left(x + \frac{t}{2}\right) + x}\\ u(x, t) = ce^{k\left(x + \frac{t}{2}\right) + x}, u(x, 0) = ce^{kx + x} = ce^{(k + 1)x} = 6e^{-3x}\\ c = 6, k + 1 = -3, k = -4\\ \therefore u(x, t) = 6e^{-4\left(x + \frac{t}{2}\right) + x} = 6e^{-(3x + 2t)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS