u(x,t)=X(x)T(t)ux(x,t)=∂x∂(u(x,t))=X′(x)T(t),ut(x,t)=∂t∂(u(x,t))=X(x)T′(t)ux(x,t)=2ut(x,t)+X(x)T(t)X′(x)T(t)=2X(x)T′(t)+X(x)T(t)(X′(x)−X(x))T(t)=2X(x)T′(t)X(x)X′(x)−X(x)=2T(t)T′(t)X(x)X′(x)−1=2T(t)T′(t)=kX(x)X′(x)−1=k,X(x)X′(x)=k+1∫X(x)X′(x)dx=∫k+1dxlog(X(x))=(k+1)x+c1X(x)=c2e(k+1)x∫T(t)T′(t)dt=2kdtlog(T(t))=2kt+c2T(t)=c3e2kt⟹u(x,t)=X(x)T(t)=c2e(k+1)x×c3e2kt=cek(x+2t)+xu(x,t)=cek(x+2t)+x,u(x,0)=cekx+x=ce(k+1)x=6e−3xc=6,k+1=−3,k=−4∴u(x,t)=6e−4(x+2t)+x=6e−(3x+2t)
Comments