Question #146805
(2xy^2 - 2y)dx + (3x^2y - 4x)dy = 0
1
Expert's answer
2020-11-26T19:54:42-0500
SolutionSolution

y(2xy22y)x(3x2y4x)=(4xy2)(6xy4)=2xy+2.\frac{∂}{∂y}(2xy^2 - 2y) - \frac{∂}{∂x}(3x^2y - 4x) = (4xy - 2) - (6xy - 4) = -2xy + 2.


Since [y(2xy22y)x(3x2y4x)](2xy22y)=2(xy1)2y(xy1)=1y\frac{[\frac{∂}{∂y}(2xy^2 - 2y) - \frac{∂}{∂x}(3x^2y - 4x)] }{ (2xy^2 - 2y)} =\frac{ -2(xy - 1)}{2y(xy - 1) }= \frac{-1}{y} , a function of y alone,

we know that e(1y)dy=ye^{∫ (\frac{1}{y}) dy} = y is an integrating factor.


Multiply both sides of the DE by yy :

(2xy32y2)dx+(3x2y24xy)dy=0.(2xy^3 - 2y^2) dx + (3x^2y^2 - 4xy) dy = 0.


Now, this is an exact DE, because

y(2xy32y2)=6xy24y=x(3x2y24xy).\frac{∂}{∂y}(2xy^3 - 2y^2) = 6xy^2 - 4y = \frac{∂}{∂x}(3x^2y^2 - 4xy).


Since

(2xy32y2)dx=x2y32xy2+f(y)(3x2y24xy)dy=x2y32xy2+g(x),∫ (2xy^3 - 2y^2) dx = x^2 y^3 - 2xy^2 + f(y)\\ ∫ (3x^2y^2 - 4xy) dy = x^2 y^3 - 2xy^2 + g(x),

the general solution is x2y32xy2=Cx^2 y^3 - 2xy^2 = C .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS