Question #146749
Solve the differential equation
(x-y^2)dx+2xy=0
1
Expert's answer
2020-11-25T15:26:13-0500
(xy2)dx+2xydy=02ydydxy2x=1Let v=y2dv=2ydyThen,dvdxvx=1 (i)P=1xPdx=1xdx=lnx=ln1xThe I.F=eln1x=1x\begin{aligned} (x-y^2)dx + 2xy dy &= 0\\ 2y\frac{dy}{dx} - \frac{y^2}{x} &= -1\\ \\ Let\ v = y^2 \\ dv = 2ydy\\ \\ Then, \frac{dv}{dx} - \frac{v}{x} &= -1\ ---(i)\\ \\ P &= \frac{-1}{x}\\ \int{Pdx} &= -\int{\frac{1}{x}dx} = -\ln x \\ &= \ln{\frac{1}{x}}\\ \\ \therefore The\ I.F &= e^{ln\frac{1}{x}} = \frac{1}{x} \end{aligned}

Multiplying equation (i) by the I.F, we get,

1xdvdx1xvx=1x1xdvdxvx2=1x\begin{aligned} \frac{1}{x}\frac{dv}{dx} - \frac{1}{x}\frac{v}{x} &= -\frac{1}{x}\\ \frac{1}{x}\frac{dv}{dx} - \frac{v}{x^2} &= -\frac{1}{x} \end{aligned}


Integrating both sides with respect to x,

vx=1xdx+b=lnx+by2=xlnx+bx\begin{aligned} \frac{v}{x} &= -\int{\frac{1}{x}dx} + b = -\ln{x} + b\\ \\ \therefore y^2 &=- x\ln{x}+bx \end{aligned}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS