(x−y2)dx+2xydy2ydxdy−xy2Let v=y2dv=2ydyThen,dxdv−xvP∫Pdx∴The I.F=0=−1=−1 −−−(i)=x−1=−∫x1dx=−lnx=lnx1=elnx1=x1
Multiplying equation (i) by the I.F, we get,
x1dxdv−x1xvx1dxdv−x2v=−x1=−x1
Integrating both sides with respect to x,
xv∴y2=−∫x1dx+b=−lnx+b=−xlnx+bx
Comments