Question #146714
(D-D'+2)(D+D'-1)=e^x-y -x^2y
1
Expert's answer
2020-11-29T19:15:22-0500

Given differential equation is (DD+2)(D+D1)=exyx2y(D-D'+2)(D+D-1) = e^{x-y}-x^2y


C.F. of the equation of type (DmD+k)z=0(D-mD'+k)z = 0 is u=ekx(y+mx)u = e^{kx}(y+mx)


So the C.F. of the equation is, C.F.=e2x(y+x)+ex(yx)C.F. = e^{-2x}(y+x) +e^x(y-x)


P.I. \frac{}{}1(DD+2)(D+D1)(exyx2y)\frac{1}{(D-D'+2)(D+D-1) }( e^{x-y}-x^2y)

For exponential part,

1(DD+2)(D+D1)exy=1(1+1+2)(111)exy=14exy\frac{1}{(D-D'+2)(D+D-1) } e^{x-y} = \frac{1}{(1+1+2)(1-1-1) } e^{x-y} = \frac{-1}{4}e^{x-y}


For polynomial part,

1(DD+2)(D+D1)(x2y)=1D2D2+2D2x2y\frac{1}{(D-D'+2)(D+D-1) }( x^2y) = \frac{1}{D^2-D'^2+2D-2}x^2y


=2(1D2D2+2D2)1x2y= -2(1 - \frac{D^2-D'^2+2D}{2})^{-1} x^2y


=2(1+(D2D2+2D2)+(D2D2+2D2)2+.....)x2y=-2 (1+(\frac{D^2-D'^2+2D}{2})+(\frac{D^2-D'^2+2D}{2})^2 + .....)x^2y

Removing the terms which will give me zero, i.e.D3,D2.......i.e. D^3, D'^2.......

=2(1+(D2D2+2D2)+D2)x2y= -2(1+(\frac{D^2-D'^2+2D}{2}) +D^2)x^2y

=(x2y+12(2y+4xy)+14×8)=(4+2y+4xy+2x2y)= -(x^2y+\frac{1}{2}(2y+4xy)+\frac{1}{4}\times 8 ) = -(4+2y+4xy+2x^2y)


So, Complete solution is,

u(z)=e2x(y+x)+ex(yx)14exy(4+2y+4xy+2x2y)u(z) = e^{-2x}(y+x) +e^x(y-x)-\frac{1}{4}e^{x-y}-(4+2y+4xy+2x^2y)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Harsh mishra
30.11.20, 07:14

Thank you very much sir

LATEST TUTORIALS
APPROVED BY CLIENTS