SolutionHere, given equation is:
p(1+q2)=q(z−a)∴p+pq2)=qz−qa⟹p+pq2−qz+qa=0−−−(1)Therefore the Charpit's auxiliary equation is
dxdf+pdzdfdp=dydf+qdzdfdq=−pdpdf−qdqdfdz=−dpdfdx=−dqdfdy=0dF or
0+p(−q)dp=0+q(−q)dq=−p−pq2dz=−1−q2dx=−2pq−zdy=0dF
or
−pqdp=−q2dq=−p−pq2dz=−1−q2dx=−2pq−zdy=0dF
So that
⟹−pq+q2dp−dq=−2pq−z+1+q2dy−dx⟹−pq+q2dp−dq=−pq+q2dy−dx⟹dp−dq=dy−dx∴dp+dx=dy+dq
Integrating, we get
⟹p+x=y+q⟹p=y−x+q
From equation (1), we get
p+pq2−qz+qa=0⟹p=pq2−qz+qaq(pq−z−a)=pq=p orq=pz−a
Using the value p and q in dz=pdx+qdy
⟹dz=(y−x+q)dx+(pz−a)dy⟹zdz=(y−x+q)dx+(pz−a)dy
Integrating, we get
log z=yx+qx−2x2+pyy−ya
Comments