Question #146753
Apply Charpit's method to solve the following differential equation:
p(1+q^2)=q(z-a)
1
Expert's answer
2020-12-01T06:26:25-0500
SolutionSolution

Here, given equation is:


p(1+q2)=q(za)p+pq2)=qzqa    p+pq2qz+qa=0(1)p(1+q^2)=q(z-a)\\ \therefore p+pq^2)=qz-qa\\ \implies p+pq^2-qz+qa=0---(1)

Therefore the Charpit's auxiliary equation is


dpdfdx+pdfdz=dqdfdy+qdfdz=dzpdfdpqdfdq=dxdfdp=dydfdq=dF0\frac{dp}{\frac{df}{dx}+p\frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}=\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}}=\frac{dx}{-\frac{df}{dp}}=\frac{dy}{-\frac{df}{dq}}=\frac{dF}{0}

or


dp0+p(q)=dq0+q(q)=dzppq2=dx1q2=dy2pqz=dF0\frac{dp}{0+p(-q)}=\frac{dq}{0+q(-q)}=\frac{dz}{-p-pq^2}=\frac{dx}{-1-q^2}=\frac{dy}{-2pq-z}=\frac{dF}{0}

or


dppq=dqq2=dzppq2=dx1q2=dy2pqz=dF0\frac{dp}{-pq}=\frac{dq}{-q^2}=\frac{dz}{-p-pq^2}=\frac{dx}{-1-q^2}=\frac{dy}{-2pq-z}=\frac{dF}{0}

So that


    dpdqpq+q2=dydx2pqz+1+q2    dpdqpq+q2=dydxpq+q2    dpdq=dydxdp+dx=dy+dq\implies \frac{dp-dq}{-pq+q^2}=\frac{dy-dx}{-2pq-z+1+q^2}\\ \implies \frac{dp-dq}{-pq+q^2}=\frac{dy-dx}{-pq+q^2}\\ \implies dp-dq = dy-dx\\ \therefore dp+dx=dy+dq\\

Integrating, we get


    p+x=y+q    p=yx+q\implies p+x=y+q\\ \implies p=y-x+q\\

From equation (1), we get


p+pq2qz+qa=0    p=pq2qz+qaq(pqza)=pq=p orq=zapp+pq^2-qz+qa=0 \implies p=pq^2-qz+qa\\ q(pq-z-a)=p\\ q=p\ or\\ q=\frac{z-a}{p}

Using the value pp and qq in dz=pdx+qdydz=pdx+qdy


    dz=(yx+q)dx+(zap)dy    dzz=(yx+q)dx+(zap)dy\implies dz=(y-x+q)dx+(\frac{z-a}{p})dy\\ \implies \frac{dz}{z}=(y-x+q)dx+(\frac{z-a}{p})dy


Integrating, we get


log z=yx+qxx22+yyapylog\ z=yx+qx-\frac{x^2}{2}+\frac{y-ya}{py}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS