S o l u t i o n Solution S o l u t i o n To find the complete integral of the given PDE
The given PDE is
p 2 q 2 + x 2 y 2 = x 2 q 2 ( x 2 + y 2 ) p^2q^2+x^2y^2= x^2q^2(x^2+y^2) p 2 q 2 + x 2 y 2 = x 2 q 2 ( x 2 + y 2 ) we may re-write it as
p 2 q 2 + x 2 y 2 = x 2 q 2 ( x 2 + y 2 ) o r p 2 q 2 + x 2 y 2 = x 4 q 2 + x 2 y 2 q 2 o r p 2 q 2 = x 4 q 2 + x 2 y 2 ( q 2 − 1 ) o r p 2 = x 4 + x 2 y 2 ( 1 − 1 q 2 ) o r p 2 − x 4 = x 2 y 2 ( 1 − 1 q 2 ) o r p 2 x 2 − x 2 = y 2 ( 1 − 1 q 2 ) o r p 2 x 2 − x 2 = y 2 − y 2 q 2 = a 2 , s a y . p^2q^2+x^2y^2=x^2q^2(x^2+y^2)\\
or\\
p^2q^2+x^2y^2=x^4q^2+x^2y^2q^2\\
or\\
p^2q^2=x^4q^2+x^2y^2(q^2-1)\\
or\\
p^2=x^4+x^2y^2(1-\frac{1}{q^2})\\
or\\
p^2-x^4=x^2y^2(1-\frac{1}{q^2})\\
or\\
\frac{p^2}{x^2}-x^2=y^2(1-\frac{1}{q^2})\\
or\\
\frac{p^2}{x^2}-x^2=y^2-\frac{y^2}{q^2}=a^2,\ say. p 2 q 2 + x 2 y 2 = x 2 q 2 ( x 2 + y 2 ) or p 2 q 2 + x 2 y 2 = x 4 q 2 + x 2 y 2 q 2 or p 2 q 2 = x 4 q 2 + x 2 y 2 ( q 2 − 1 ) or p 2 = x 4 + x 2 y 2 ( 1 − q 2 1 ) or p 2 − x 4 = x 2 y 2 ( 1 − q 2 1 ) or x 2 p 2 − x 2 = y 2 ( 1 − q 2 1 ) or x 2 p 2 − x 2 = y 2 − q 2 y 2 = a 2 , s a y .
This is the special form ( f ( p , x ) = g ( q , y ) t y p e ) (f(p,x) =g(q,y)type) ( f ( p , x ) = g ( q , y ) t y p e ) , of the Charpit’s equations,
p 2 x 2 − x 2 = a 2 a n d y 2 − y 2 q 2 = a 2 i . e p = x x 2 + a 2 a n d q = y y 2 − a 2 \frac{p^2}{x^2}-x^2=a^2\ and\ y^2-\frac{y^2}{q^2}=a^2\\i.e\\
p=x\sqrt{x^2+a^2}\ and\ q=\frac{y}{\sqrt{y^2-a^2}} x 2 p 2 − x 2 = a 2 an d y 2 − q 2 y 2 = a 2 i . e p = x x 2 + a 2 an d q = y 2 − a 2 y Putting these values of p p p and q q q in the equation
d z = p d x + q d y dz=p\ dx+q\ dy d z = p d x + q d y We have
d z = x x 2 + a 2 d x + y y 2 − a 2 d y dz=x\sqrt{x^2+a^2}\ dx+\frac{y}{\sqrt{y^2-a^2}}dy d z = x x 2 + a 2 d x + y 2 − a 2 y d y
Integrating it, we get the complete integral as
z = 1 3 ( x 2 + a 2 ) 3 2 + y 2 − a 2 + b z=\frac13(x^2+a^2)^\frac32+\sqrt{y^2-a^2}+b z = 3 1 ( x 2 + a 2 ) 2 3 + y 2 − a 2 + b Is the complete integral f the PDE
Comments