Question #146590

p^2q^2+x^2y^2= x^2q^2(x^2+y^2)


1
Expert's answer
2020-12-07T15:57:40-0500
SolutionSolution

To find the complete integral of the given PDE


The given PDE is


p2q2+x2y2=x2q2(x2+y2)p^2q^2+x^2y^2= x^2q^2(x^2+y^2)

we may re-write it as


p2q2+x2y2=x2q2(x2+y2)orp2q2+x2y2=x4q2+x2y2q2orp2q2=x4q2+x2y2(q21)orp2=x4+x2y2(11q2)orp2x4=x2y2(11q2)orp2x2x2=y2(11q2)orp2x2x2=y2y2q2=a2, say.p^2q^2+x^2y^2=x^2q^2(x^2+y^2)\\ or\\ p^2q^2+x^2y^2=x^4q^2+x^2y^2q^2\\ or\\ p^2q^2=x^4q^2+x^2y^2(q^2-1)\\ or\\ p^2=x^4+x^2y^2(1-\frac{1}{q^2})\\ or\\ p^2-x^4=x^2y^2(1-\frac{1}{q^2})\\ or\\ \frac{p^2}{x^2}-x^2=y^2(1-\frac{1}{q^2})\\ or\\ \frac{p^2}{x^2}-x^2=y^2-\frac{y^2}{q^2}=a^2,\ say.

This is the special form (f(p,x)=g(q,y)type)(f(p,x) =g(q,y)type) , of the Charpit’s equations,


p2x2x2=a2 and y2y2q2=a2i.ep=xx2+a2 and q=yy2a2\frac{p^2}{x^2}-x^2=a^2\ and\ y^2-\frac{y^2}{q^2}=a^2\\i.e\\ p=x\sqrt{x^2+a^2}\ and\ q=\frac{y}{\sqrt{y^2-a^2}}

Putting these values of pp and qq in the equation


dz=p dx+q dydz=p\ dx+q\ dy

We have


dz=xx2+a2 dx+yy2a2dydz=x\sqrt{x^2+a^2}\ dx+\frac{y}{\sqrt{y^2-a^2}}dy

Integrating it, we get the complete integral as


z=13(x2+a2)32+y2a2+bz=\frac13(x^2+a^2)^\frac32+\sqrt{y^2-a^2}+b

Is the complete integral f the PDE


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS