Given differential equation is, d x x 2 − y 2 − z 2 = d y 2 x y = d z 2 x z \frac{dx}{x^2-y^2-z^2}=\frac{dy}{2xy}=\frac{dz}{2xz} x 2 − y 2 − z 2 d x = 2 x y d y = 2 x z d z
Taking last two terms, d y 2 x y = d z 2 x z ⟹ d y y = d z z \frac{dy}{2xy}=\frac{dz}{2xz} \implies \frac{dy}{y}=\frac{dz}{z} 2 x y d y = 2 x z d z ⟹ y d y = z d z
Integrating both sides, we get,
y = c z y=cz y = cz (1)
Taking first and last term,
d x x 2 − y 2 − z 2 = d z 2 x z \frac{dx}{x^2-y^2-z^2}=\frac{dz}{2xz} x 2 − y 2 − z 2 d x = 2 x z d z
d x x 2 − c 2 z 2 − z 2 = d z 2 x z \frac{dx}{x^2-c^2z^2-z^2}=\frac{dz}{2xz} x 2 − c 2 z 2 − z 2 d x = 2 x z d z
d x d z = x 2 − z 2 ( 1 + c 2 ) 2 x z \frac{dx}{dz} = \frac{x^2-z^2(1+c^2)}{2xz} d z d x = 2 x z x 2 − z 2 ( 1 + c 2 )
Putting x=vz, then, d x d z = v + z d v d z \frac{dx}{dz} = v+z\frac{dv}{dz} d z d x = v + z d z d v
Then equation will be, v + z d v d z = v 2 x 2 − z 2 ( 1 + c 2 ) 2 v z 2 = v 2 − ( 1 + c 2 ) 2 v v+z\frac{dv}{dz} = \frac{v^2x^2-z^2(1+c^2)}{2vz^2} = \frac{v^2-(1+c^2)}{2v} v + z d z d v = 2 v z 2 v 2 x 2 − z 2 ( 1 + c 2 ) = 2 v v 2 − ( 1 + c 2 )
z d v d z = − v 2 + ( 1 + c 2 ) 2 v z\frac{dv}{dz} = -\frac{v^2+(1+c^2)}{2v} z d z d v = − 2 v v 2 + ( 1 + c 2 )
2 v d v v 2 + ( 1 + c 2 ) = − d z z \frac{2vdv}{v^2+(1+c^2)} = -\frac{dz}{z} v 2 + ( 1 + c 2 ) 2 v d v = − z d z
Integrating the above equation, l o g ∣ v 2 + ( 1 + c 2 ) ∣ = − l o g ∣ z ∣ + l o g ∣ c 1 ∣ ⟹ v 2 + ( 1 + c 2 ) = c 1 z log|v^2+(1+c^2)|=-log|z|+log|c_1| \implies v^2+(1+c^2)=\frac{c_1}{z} l o g ∣ v 2 + ( 1 + c 2 ) ∣ = − l o g ∣ z ∣ + l o g ∣ c 1 ∣ ⟹ v 2 + ( 1 + c 2 ) = z c 1
Putting value of v, x 2 z 2 = c 1 z − ( 1 + c 2 ) \frac{x^2}{z^2}= \frac{c_1}{z} -(1+c^2) z 2 x 2 = z c 1 − ( 1 + c 2 )
x 2 = c 1 z − z 2 ( 1 + c 2 ) x^2 = c_1z - z^2(1+c^2) x 2 = c 1 z − z 2 ( 1 + c 2 )
Solving quadratic equation for z, we get,
z = c 1 ± ( c 1 2 − 4 x 2 ( 1 + c 2 ) ) 2 ( 1 + c 2 ) z=\frac{c_1\pm \sqrt{(c_1^2-4x^2(1+c^2)})}{ 2(1+c^2)} z = 2 ( 1 + c 2 ) c 1 ± ( c 1 2 − 4 x 2 ( 1 + c 2 ) ) (2)
Equation (1) & (2) are solutions.
Comments