Given differential equation is, x2−y2−z2dx=2xydy=2xzdz
Taking last two terms, 2xydy=2xzdz⟹ydy=zdz
Integrating both sides, we get,
y=cz (1)
Taking first and last term,
x2−y2−z2dx=2xzdz
x2−c2z2−z2dx=2xzdz
dzdx=2xzx2−z2(1+c2)
Putting x=vz, then, dzdx=v+zdzdv
Then equation will be, v+zdzdv=2vz2v2x2−z2(1+c2)=2vv2−(1+c2)
zdzdv=−2vv2+(1+c2)
v2+(1+c2)2vdv=−zdz
Integrating the above equation, log∣v2+(1+c2)∣=−log∣z∣+log∣c1∣⟹v2+(1+c2)=zc1
Putting value of v, z2x2=zc1−(1+c2)
x2=c1z−z2(1+c2)
Solving quadratic equation for z, we get,
z=2(1+c2)c1±(c12−4x2(1+c2)) (2)
Equation (1) & (2) are solutions.
Comments