Question #146748
Solve the simultaneous differential equation
dx/x^2-y^2-z^2=dy/2xy=dz/2xz
1
Expert's answer
2020-11-29T19:16:59-0500

Given differential equation is, dxx2y2z2=dy2xy=dz2xz\frac{dx}{x^2-y^2-z^2}=\frac{dy}{2xy}=\frac{dz}{2xz}



Taking last two terms, dy2xy=dz2xz    dyy=dzz\frac{dy}{2xy}=\frac{dz}{2xz} \implies \frac{dy}{y}=\frac{dz}{z}

Integrating both sides, we get,

y=czy=cz (1)


Taking first and last term,

dxx2y2z2=dz2xz\frac{dx}{x^2-y^2-z^2}=\frac{dz}{2xz}


dxx2c2z2z2=dz2xz\frac{dx}{x^2-c^2z^2-z^2}=\frac{dz}{2xz}


dxdz=x2z2(1+c2)2xz\frac{dx}{dz} = \frac{x^2-z^2(1+c^2)}{2xz}


Putting x=vz, then, dxdz=v+zdvdz\frac{dx}{dz} = v+z\frac{dv}{dz}


Then equation will be, v+zdvdz=v2x2z2(1+c2)2vz2=v2(1+c2)2vv+z\frac{dv}{dz} = \frac{v^2x^2-z^2(1+c^2)}{2vz^2} = \frac{v^2-(1+c^2)}{2v}

zdvdz=v2+(1+c2)2vz\frac{dv}{dz} = -\frac{v^2+(1+c^2)}{2v}


2vdvv2+(1+c2)=dzz\frac{2vdv}{v^2+(1+c^2)} = -\frac{dz}{z}

Integrating the above equation, logv2+(1+c2)=logz+logc1    v2+(1+c2)=c1zlog|v^2+(1+c^2)|=-log|z|+log|c_1| \implies v^2+(1+c^2)=\frac{c_1}{z}

Putting value of v, x2z2=c1z(1+c2)\frac{x^2}{z^2}= \frac{c_1}{z} -(1+c^2)

x2=c1zz2(1+c2)x^2 = c_1z - z^2(1+c^2)


Solving quadratic equation for z, we get,


z=c1±(c124x2(1+c2))2(1+c2)z=\frac{c_1\pm \sqrt{(c_1^2-4x^2(1+c^2)})}{ 2(1+c^2)} (2)


Equation (1) & (2) are solutions.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS