The one dimensional heat flow equation is given by:
"\\frac{\\partial u}{\\partial t}=\\alpha^2\\frac{\\partial^2 u}{\\partial x^2}"
In steady-state:
"\\frac{\\partial u}{\\partial t}=0"
So:
"\\frac{\\partial^2 u}{\\partial x^2}=0"
Solving:
u=ax+b
Initial conditions in steady-state:
u=0 at x=0
u=100 at x=40
Then:
u=2.5x
Hence the boundary conditions are:
u(0,t)=20
u(40,t)=60
u(x,0)=2.5x
The solution of one dimensional heat flow equation is given by:
u(x,t)=(A*cos("\\lambda"x)+B*sin("\\lambda"x))*exp["-\\alpha^2*\\lambda^2*t" ]
Break up the required funciton u (x,t) into two parts:
u(x,t)=us(x)+ut(x,t)
To find us(x):
"\\frac{\\partial^2 u_s}{\\partial x^2}=0"
us(x) = ax+b
us(0)=20
us(40)=60
Then:
us=x+20
To find ut(x,t):
ut( x,t) = u(x,t) –us(x)
ut(0,t) = u(0,t)–us(0) = 20–20 = 0
ut(40,t) = u(40,t)–us(40) = 60–60 = 0
ut(x,0) = u(x,0) –us(x) = 2.5x-x-20=1.5x-20
ut(x,t)=(A*cos("\\lambda"x)+B*sin("\\lambda"x))*exp["-\\alpha^2*\\lambda^2*t" ]
A=0; "\\lambda" =(n"\\pi")/40
ut(x,t)=B*sin((n"\\pi"x)/40)*exp["-\\alpha^2*((n\\pi)\/40)^2*t" ]
Most general solution:
ut(x,t)="\\displaystyle\\sum_{n=1}^\\infty" Bn*sin((n"\\pi"x)/40)*exp["-\\alpha^2*((n\\pi)\/40)^2*t" ]
Using condition:
Bn = 2/40*"\\int_{0}^{40}" (1.5x-20)*sin(n"\\pi"x/40)dx =
u=us+ut
Comments
Leave a comment