(D2−2D+4)y=8x2e2xsin2xThe solution to the above equation isy=yc+ypwhereycis the complementary factor andyp is the particular integralThe auxiliary equation to this ODE ism2−2m+4m=0=22±4−16=22±j12=22±j23=1±j3The complementary solution to this ODE isy=ex(Acos(3x)+Bsin(3))The Wronskian of the two solutions isW(x)=e−∫−2dx=e2x∴ Our particular solution will be given byyp=V1(x)exsin(3x)+V2(x)excos(3x)WhereV1(x)=−∫W(x)r(x)sin(3x)dx,V2(x)=∫W(x)r(x)cos(3x)dxandV1(x)=−∫e2x8x2e2xsin2xsin(3x)dx=−∫8x2sin2xsin(3x)dx=−83(8xsin2(x)−(x2−30)sin(2x))sin(3x)+16cos2(x)((x2−26)cos(3x)+43xsin(3x))−16((x2−26)sin2(x)+7xsin(2x))cos(3x)+CV2(x)=∫e2x8x2e2xsin2xcos(3x)dx=∫8x2sin2xcos(3x)dx=16((x2−26)sin2(x)+7xsin(2x))sin(3x)+16cos2(x)(43xcos(3x)−(x2−26)sin(3x))+163(x2−30)sin(x)cos(3x)cos(x)−643xsin2(x)cos(3x))+Cyp=exsin(3x)(−83(8xsin2(x)−(x2−30)sin(2x))sin(3x)+16cos2(x)((x2−26)cos(3x)+43xsin(3x))−16((x2−26)sin2(x)+7xsin(2x))cos(3x))+excos(3x)(16((x2−26)sin2(x)+7xsin(2x))sin(3x)+16cos2(x)(43xcos(3x)−(x2−26)sin(3x))+163(x2−30)sin(x)cos(3x)cos(x)−643xsin2(x)cos(3x))∴y=ex(Acos(3x)+Bsin(3))+exsin(3x)(−83(8xsin2(x)−(x2−30)sin(2x))sin(3x)+16cos2(x)((x2−26)cos(3x)+43xsin(3x))−16((x2−26)sin2(x)+7xsin(2x))cos(3x))+excos(3x)(16((x2−26)sin2(x)+7xsin(2x))sin(3x)+16cos2(x)(43xcos(3x)−(x2−26)sin(3x))+163(x2−30)sin(x)cos(3x)cos(x)−643xsin2(x)cos(3x))
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments