Question #145519

y′′′−2y′′−y′+2y=e4x


variation of paramaters


1
Expert's answer
2020-11-22T18:46:00-0500

Let us solve the differential equation y2yy+2y=e4xy'''−2y''−y'+2y=e^{4x} using the method of variation of paramaters. For this, firstly solve the characteristic equation k32k2k+2=0k^3-2k^2-k+2=0 of y2yy+2y=0y'''−2y''−y'+2y=0. This characteristic eqution is equivalent to k2(k2)(k2)=0k^2(k-2)-(k-2)=0 which is equivalent to (k21)(k2)=0(k^2-1)(k-2)=0. Therefore, k1=1,k2=1,k3=2.k_1=1,k_2=-1,k_3=2. According to the method of variation of paramaters, the solution of y2yy+2y=e4xy'''−2y''−y'+2y=e^{4x} is

y(x)=C1(x)ex+C2(x)ex+C3(x)e2x.y(x)=C_1(x)e^x+C_2(x)e^{-x}+C_3(x)e^{2x}.


Then we have the following system:


{C1(x)ex+C2(x)ex+C3(x)e2x=0C1(x)exC2(x)ex+2C3(x)e2x=0C1(x)ex+C2(x)ex+4C3(x)e2x=e4x\begin{cases} C_1'(x)e^x+C_2'(x)e^{-x}+C_3'(x)e^{2x}=0\\ C_1'(x)e^x-C_2'(x)e^{-x}+2C_3'(x)e^{2x}=0\\ C_1'(x)e^x+C_2'(x)e^{-x}+4C_3'(x)e^{2x}=e^{4x} \end{cases}


which is equivalent to


{C1(x)ex+C2(x)ex+C3(x)e2x=02C1(x)ex+3C3(x)e2x=03C3(x)e2x=e4x\begin{cases} C_1'(x)e^x+C_2'(x)e^{-x}+C_3'(x)e^{2x}=0\\ 2C_1'(x)e^x+3C_3'(x)e^{2x}=0\\ 3C_3'(x)e^{2x}=e^{4x} \end{cases}


{C2(x)=C1(x)e2xC3(x)e3xC1(x)=32C3(x)exC3(x)=13e2x\begin{cases} C_2'(x)=-C_1'(x)e^{2x}-C_3'(x)e^{3x}\\ C_1'(x)=-\frac{3}{2}C_3'(x)e^{x}\\ C_3'(x)=\frac{1}{3}e^{2x} \end{cases}


{C2(x)=12e5x13e5xC1(x)=12e3xC3(x)=13e2x\begin{cases} C_2'(x)=\frac{1}{2}e^{5x}-\frac{1}{3}e^{5x}\\ C_1'(x)=-\frac{1}{2}e^{3x}\\ C_3'(x)=\frac{1}{3}e^{2x} \end{cases}


{C2(x)=16e5xC1(x)=12e3xC3(x)=13e2x\begin{cases} C_2'(x)=\frac{1}{6}e^{5x}\\ C_1'(x)=-\frac{1}{2}e^{3x}\\ C_3'(x)=\frac{1}{3}e^{2x} \end{cases}


{C2(x)=130e5x+C2C1(x)=16e3x+C1C3(x)=16e2x+C3\begin{cases} C_2(x)=\frac{1}{30}e^{5x}+C_2\\ C_1(x)=-\frac{1}{6}e^{3x}+C_1\\ C_3(x)=\frac{1}{6}e^{2x}+C_3 \end{cases}


Therefore, the solution is the following:


y(x)=(16e3x+C1)ex+(130e5x+C2)ex+(16e2x+C3)e2x=y(x)=(-\frac{1}{6}e^{3x}+C_1)e^x+(\frac{1}{30}e^{5x}+C_2)e^{-x}+(\frac{1}{6}e^{2x}+C_3)e^{2x}=

=C1ex+C2ex+C3e2x+130e4x.=C_1e^x+C_2e^{-x}+C_3e^{2x}+\frac{1}{30}e^{4x}.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS