Let us solve the differential equation y ′ ′ ′ − 2 y ′ ′ − y ′ + 2 y = e 4 x y'''−2y''−y'+2y=e^{4x} y ′′′ − 2 y ′′ − y ′ + 2 y = e 4 x using the method of variation of paramaters. For this, firstly solve the characteristic equation k 3 − 2 k 2 − k + 2 = 0 k^3-2k^2-k+2=0 k 3 − 2 k 2 − k + 2 = 0 of y ′ ′ ′ − 2 y ′ ′ − y ′ + 2 y = 0 y'''−2y''−y'+2y=0 y ′′′ − 2 y ′′ − y ′ + 2 y = 0 . This characteristic eqution is equivalent to k 2 ( k − 2 ) − ( k − 2 ) = 0 k^2(k-2)-(k-2)=0 k 2 ( k − 2 ) − ( k − 2 ) = 0 which is equivalent to ( k 2 − 1 ) ( k − 2 ) = 0 (k^2-1)(k-2)=0 ( k 2 − 1 ) ( k − 2 ) = 0 . Therefore, k 1 = 1 , k 2 = − 1 , k 3 = 2. k_1=1,k_2=-1,k_3=2. k 1 = 1 , k 2 = − 1 , k 3 = 2. According to the method of variation of paramaters, the solution of y ′ ′ ′ − 2 y ′ ′ − y ′ + 2 y = e 4 x y'''−2y''−y'+2y=e^{4x} y ′′′ − 2 y ′′ − y ′ + 2 y = e 4 x is
y ( x ) = C 1 ( x ) e x + C 2 ( x ) e − x + C 3 ( x ) e 2 x . y(x)=C_1(x)e^x+C_2(x)e^{-x}+C_3(x)e^{2x}. y ( x ) = C 1 ( x ) e x + C 2 ( x ) e − x + C 3 ( x ) e 2 x .
Then we have the following system:
{ C 1 ′ ( x ) e x + C 2 ′ ( x ) e − x + C 3 ′ ( x ) e 2 x = 0 C 1 ′ ( x ) e x − C 2 ′ ( x ) e − x + 2 C 3 ′ ( x ) e 2 x = 0 C 1 ′ ( x ) e x + C 2 ′ ( x ) e − x + 4 C 3 ′ ( x ) e 2 x = e 4 x \begin{cases}
C_1'(x)e^x+C_2'(x)e^{-x}+C_3'(x)e^{2x}=0\\
C_1'(x)e^x-C_2'(x)e^{-x}+2C_3'(x)e^{2x}=0\\
C_1'(x)e^x+C_2'(x)e^{-x}+4C_3'(x)e^{2x}=e^{4x}
\end{cases} ⎩ ⎨ ⎧ C 1 ′ ( x ) e x + C 2 ′ ( x ) e − x + C 3 ′ ( x ) e 2 x = 0 C 1 ′ ( x ) e x − C 2 ′ ( x ) e − x + 2 C 3 ′ ( x ) e 2 x = 0 C 1 ′ ( x ) e x + C 2 ′ ( x ) e − x + 4 C 3 ′ ( x ) e 2 x = e 4 x
which is equivalent to
{ C 1 ′ ( x ) e x + C 2 ′ ( x ) e − x + C 3 ′ ( x ) e 2 x = 0 2 C 1 ′ ( x ) e x + 3 C 3 ′ ( x ) e 2 x = 0 3 C 3 ′ ( x ) e 2 x = e 4 x \begin{cases}
C_1'(x)e^x+C_2'(x)e^{-x}+C_3'(x)e^{2x}=0\\
2C_1'(x)e^x+3C_3'(x)e^{2x}=0\\
3C_3'(x)e^{2x}=e^{4x}
\end{cases} ⎩ ⎨ ⎧ C 1 ′ ( x ) e x + C 2 ′ ( x ) e − x + C 3 ′ ( x ) e 2 x = 0 2 C 1 ′ ( x ) e x + 3 C 3 ′ ( x ) e 2 x = 0 3 C 3 ′ ( x ) e 2 x = e 4 x
{ C 2 ′ ( x ) = − C 1 ′ ( x ) e 2 x − C 3 ′ ( x ) e 3 x C 1 ′ ( x ) = − 3 2 C 3 ′ ( x ) e x C 3 ′ ( x ) = 1 3 e 2 x \begin{cases}
C_2'(x)=-C_1'(x)e^{2x}-C_3'(x)e^{3x}\\
C_1'(x)=-\frac{3}{2}C_3'(x)e^{x}\\
C_3'(x)=\frac{1}{3}e^{2x}
\end{cases} ⎩ ⎨ ⎧ C 2 ′ ( x ) = − C 1 ′ ( x ) e 2 x − C 3 ′ ( x ) e 3 x C 1 ′ ( x ) = − 2 3 C 3 ′ ( x ) e x C 3 ′ ( x ) = 3 1 e 2 x
{ C 2 ′ ( x ) = 1 2 e 5 x − 1 3 e 5 x C 1 ′ ( x ) = − 1 2 e 3 x C 3 ′ ( x ) = 1 3 e 2 x \begin{cases}
C_2'(x)=\frac{1}{2}e^{5x}-\frac{1}{3}e^{5x}\\
C_1'(x)=-\frac{1}{2}e^{3x}\\
C_3'(x)=\frac{1}{3}e^{2x}
\end{cases} ⎩ ⎨ ⎧ C 2 ′ ( x ) = 2 1 e 5 x − 3 1 e 5 x C 1 ′ ( x ) = − 2 1 e 3 x C 3 ′ ( x ) = 3 1 e 2 x
{ C 2 ′ ( x ) = 1 6 e 5 x C 1 ′ ( x ) = − 1 2 e 3 x C 3 ′ ( x ) = 1 3 e 2 x \begin{cases}
C_2'(x)=\frac{1}{6}e^{5x}\\
C_1'(x)=-\frac{1}{2}e^{3x}\\
C_3'(x)=\frac{1}{3}e^{2x}
\end{cases} ⎩ ⎨ ⎧ C 2 ′ ( x ) = 6 1 e 5 x C 1 ′ ( x ) = − 2 1 e 3 x C 3 ′ ( x ) = 3 1 e 2 x
{ C 2 ( x ) = 1 30 e 5 x + C 2 C 1 ( x ) = − 1 6 e 3 x + C 1 C 3 ( x ) = 1 6 e 2 x + C 3 \begin{cases}
C_2(x)=\frac{1}{30}e^{5x}+C_2\\
C_1(x)=-\frac{1}{6}e^{3x}+C_1\\
C_3(x)=\frac{1}{6}e^{2x}+C_3
\end{cases} ⎩ ⎨ ⎧ C 2 ( x ) = 30 1 e 5 x + C 2 C 1 ( x ) = − 6 1 e 3 x + C 1 C 3 ( x ) = 6 1 e 2 x + C 3
Therefore, the solution is the following:
y ( x ) = ( − 1 6 e 3 x + C 1 ) e x + ( 1 30 e 5 x + C 2 ) e − x + ( 1 6 e 2 x + C 3 ) e 2 x = y(x)=(-\frac{1}{6}e^{3x}+C_1)e^x+(\frac{1}{30}e^{5x}+C_2)e^{-x}+(\frac{1}{6}e^{2x}+C_3)e^{2x}= y ( x ) = ( − 6 1 e 3 x + C 1 ) e x + ( 30 1 e 5 x + C 2 ) e − x + ( 6 1 e 2 x + C 3 ) e 2 x =
= C 1 e x + C 2 e − x + C 3 e 2 x + 1 30 e 4 x . =C_1e^x+C_2e^{-x}+C_3e^{2x}+\frac{1}{30}e^{4x}. = C 1 e x + C 2 e − x + C 3 e 2 x + 30 1 e 4 x .
Comments