If equation is of the form, (D−mD′−k)z=0 has the solution C.F.=ekxϕ1(y+mx)
Then, for the given equation,
(D−3D′−2)2z=2e2xsin(2y+x)
C.F. of the equation, C.F.=e2xϕ1(y+3x)+xe2xϕ2(y+3x)
P.I. is, [D−3D′−2]212e2xsin(2y+x)=2e2x[(D+2)−3D′−2]21sin(2y+x)
=2e2x2!x2sin(2y+x)=x2e2xsin(2y+x)
Then solution is,
z=e2xϕ1(y+3x)+xe2xϕ2(y+3x)+x2e2xsin(2y+x)
Comments