Question #145227
Solve
(D-3D'-2)^2.z= 2e^2x.sin(2y+x)
1
Expert's answer
2020-11-19T15:16:04-0500

If equation is of the form, (DmDk)z=0(D-mD'-k)z =0 has the solution C.F.=ekxϕ1(y+mx)C.F. = e^{kx}\phi_1(y+mx)


Then, for the given equation,

(D3D2)2z=2e2xsin(2y+x)(D-3D'-2)^2z= 2e^{2x}sin(2y+x)


C.F. of the equation, C.F.=e2xϕ1(y+3x)+xe2xϕ2(y+3x)C.F. = e^{2x}\phi_1(y+3x)+xe^{2x}\phi_2(y+3x)


P.I. is, 1[D3D2]22e2xsin(2y+x)=2e2x1[(D+2)3D2]2sin(2y+x)\frac{1}{[D-3D'-2]^2}2e^{2x}sin(2y+x) = 2e^{2x}\frac{1}{[(D+2)-3D'-2]^2}sin(2y+x)


=2e2xx22!sin(2y+x)=x2e2xsin(2y+x)=2e^{2x}\frac{x^2}{2!}sin(2y+x)={x^2}e^{2x}sin(2y+x)


Then solution is,

z=e2xϕ1(y+3x)+xe2xϕ2(y+3x)+x2e2xsin(2y+x)z = e^{2x}\phi_1(y+3x)+xe^{2x}\phi_2(y+3x)+{x^2}e^{2x}sin(2y+x)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS