(x3+xy2+a2y)dx+(y3+yx2+a2x)dy=0x3dx+xy2dx+a2ydx+y3dy+yx2dy+a2xdy=0x3dx+y3dy+xy2dx+yx2dy+a2(ydx+xdy)=0x3dx+y3dy+xy(ydx+xdy)+a2(ydx+xdy)=0x3dx+y3dy+(xy+a2)(ydx+xdy)=0Integrating both sides∫x3dx+∫y3dy+∫(xy+a2)d(xy)=CSubstituteu=xyin the last integral.∫x3dx+∫y3dy+∫(u+a2)du=C4x4+4y4+2u2+a2u=C4x4+4y4+2(xy)2+a2xy=Cx4+y4+2(xy)2+a2xy=C∴(x2+y2)2+a2xy=Cis a solution to the ODEWhereCis an arbitrary constant.
Comments