Question #145388
Solve : (x^3+xy^2+a^2y) dx+(y^3+yx^2+a^2x) dy=0
1
Expert's answer
2020-11-22T16:43:14-0500

(x3+xy2+a2y)dx+(y3+yx2+a2x)dy=0x3dx+xy2dx+a2ydx+y3dy+yx2dy+a2xdy=0x3dx+y3dy+xy2dx+yx2dy+a2(ydx+xdy)=0x3dx+y3dy+xy(ydx+xdy)+a2(ydx+xdy)=0x3dx+y3dy+(xy+a2)(ydx+xdy)=0Integrating both sidesx3dx+y3dy+(xy+a2)d(xy)=CSubstituteu=xyin the last integral.x3dx+y3dy+(u+a2)du=Cx44+y44+u22+a2u=Cx44+y44+(xy)22+a2xy=Cx4+y4+2(xy)2+a2xy=C(x2+y2)2+a2xy=Cis a solution to the ODEWhereCis an arbitrary constant.\displaystyle (x^3+xy^2+a^2y)\mathrm{d}x + (y^3+yx^2+a^2x)\mathrm{d}y=0\\ x^3\mathrm{d}x + xy^2\mathrm{d}x + a^2y\mathrm{d}x + y^3\mathrm{d}y + yx^2\mathrm{d}y + a^2x \mathrm{d}y =0\\ x^3 \mathrm{d}x + y^3 \mathrm{d}y + xy^2\mathrm{d}x + yx^2\mathrm{d}y + a^2(y\mathrm{d}x + x\mathrm{d}y)=0\\ x^3 \mathrm{d}x + y^3 \mathrm{d}y + xy(y\mathrm{d}x + x\mathrm{d}y) + a^2(y\mathrm{d}x + x\mathrm{d}y)=0\\ x^3 \mathrm{d}x + y^3 \mathrm{d}y + (xy + a^2)(y\mathrm{d}x + x\mathrm{d}y) =0\\ \textsf{Integrating both sides}\\ \int x^3\, \mathrm{d}x + \int y^3 \,\mathrm{d}y + \int\,(xy + a^2)\mathrm{d}(xy) = C\\ \textsf{Substitute}\, u = xy\,\textsf{in the last integral}.\\ \int x^3\, \mathrm{d}x + \int y^3 \,\mathrm{d}y + \int\,(u + a^2)\mathrm{d}u = C\\ \frac{x^4}{4} + \frac{y^4}{4} + \frac{u^2}{2} + a^2u = C\\ \frac{x^4}{4} + \frac{y^4}{4} + \frac{(xy)^2}{2} + a^2xy = C\\ x^4 + y^4 + 2(xy)^2 + a^2xy = C\\ \therefore(x^2 + y^2)^2 + a^2xy = C \,\,\textsf{is a solution to the ODE}\\ \textsf{Where}\, C\, \textsf{is an arbitrary constant.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS