S o l u t i o n Solution S o l u t i o n In matrix from, the system is
d d t [ x y z ] = [ 3 − 1 − 1 1 1 − 1 1 − 1 1 ] [ x y z ] \frac{d}{dt}\begin{bmatrix}x \\ y \\ z \end{bmatrix}=\begin{bmatrix}3 &-1 & -1 \\ 1 & 1 & -1 \\ 1 &-1 & 1 \end{bmatrix} \begin{bmatrix}x \\ y \\ z \end{bmatrix} d t d ⎣ ⎡ x y z ⎦ ⎤ = ⎣ ⎡ 3 1 1 − 1 1 − 1 − 1 − 1 1 ⎦ ⎤ ⎣ ⎡ x y z ⎦ ⎤
The coefficient matrix has eigenvalues λ \lambda λ such that
∣ 3 − λ − 1 − 1 1 1 − λ − 1 1 − 1 1 − λ ∣ = − ( λ − 2 ) 2 ( λ − 1 ) = 0 ⟹ 2 ( 2 ) , λ = 1 \begin{vmatrix}
3-\lambda & -1 & -1 \\
1 & 1-\lambda & -1 \\
1 & -1 & 1-\lambda \\
\end{vmatrix}
=-(\lambda-2)^2(\lambda-1)=0 \implies 2_{(2)}, \lambda=1 ∣ ∣ 3 − λ 1 1 − 1 1 − λ − 1 − 1 − 1 1 − λ ∣ ∣ = − ( λ − 2 ) 2 ( λ − 1 ) = 0 ⟹ 2 ( 2 ) , λ = 1
(where the subscript denotes multiplicity of the eigenvalue).
λ = 2 \lambda =2 λ = 2 :
[ 1 − 1 − 1 1 − 1 − 1 1 − 1 − 1 ] n ⃗ 1 = 0 ⃗ ⟹ n 1 , 1 − n 1 , 2 − n 1 , 3 = 0 ⟹ n 1 , 1 = n 1 , 2 + n 1 , 3 \begin{bmatrix}1 &-1 & -1 \\ 1 & -1 & -1 \\ 1 &-1 & -1 \end{bmatrix} \vec n_1=\vec 0\\
\implies n_{1,1}-n_{1,2}-n_{1,3}=0 \implies n_{1,1}=n_{1,2}+n_{1,3} ⎣ ⎡ 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 ⎦ ⎤ n 1 = 0 ⟹ n 1 , 1 − n 1 , 2 − n 1 , 3 = 0 ⟹ n 1 , 1 = n 1 , 2 + n 1 , 3
By picking n 1 , 1 = 1 n_{1,1}=1 n 1 , 1 = 1 , we can then set n 1 , 2 = 1 n_{1,2}=1 n 1 , 2 = 1 and n 1 , 3 = 0 n_{1,3}=0 n 1 , 3 = 0 , and vice versa, to find two corresponding eigenvectors,
n ⃗ 1 = [ 1 1 0 ] , n ⃗ 2 = [ 1 0 1 ] \vec n_1=\begin{bmatrix}1 \\ 1 \\ 0 \end{bmatrix}, \vec n_2=\begin{bmatrix}1 \\ 0 \\ 1 \end{bmatrix} n 1 = ⎣ ⎡ 1 1 0 ⎦ ⎤ , n 2 = ⎣ ⎡ 1 0 1 ⎦ ⎤
λ = 1 \lambda=1 λ = 1 :
[ 2 − 1 − 1 1 0 − 1 1 − 1 0 ] n ⃗ 3 = 0 ⃗ ⟹ 2 n 3 , 1 − n 3 , 2 − n 3 , 3 = 0 ⟹ 2 n 3 , 1 = n 3 , 2 + n 3 , 3 \begin{bmatrix}2 &-1 & -1 \\ 1 & 0 & -1 \\ 1 &-1 & 0 \end{bmatrix} \vec n_3=\vec 0\\
\implies 2n_{3,1}-n_{3,2}-n_{3,3}=0 \implies 2n_{3,1}=n_{3,2}+n_{3,3} ⎣ ⎡ 2 1 1 − 1 0 − 1 − 1 − 1 0 ⎦ ⎤ n 3 = 0 ⟹ 2 n 3 , 1 − n 3 , 2 − n 3 , 3 = 0 ⟹ 2 n 3 , 1 = n 3 , 2 + n 3 , 3
We obtain n ⃗ 3 \vec n_3 n 3 independent of n ⃗ 1 , n ⃗ 2 \vec n_1, \vec n_2 n 1 , n 2 by picking n ⃗ 3 , 2 = n ⃗ 3 , 3 = 1 \vec n_{3,2}=\vec n_{3,3}=1 n 3 , 2 = n 3 , 3 = 1 , so that the third corresponding eigenvector is;
n ⃗ 3 = [ 1 1 1 ] \vec n_3=\begin{bmatrix}1 \\ 1 \\ 1 \end{bmatrix} n 3 = ⎣ ⎡ 1 1 1 ⎦ ⎤
Then the general solution to this system is
[ x y z ] = c 1 e 2 t n ⃗ 1 + c 2 t e 2 t n ⃗ 2 + c 3 e t n ⃗ 3 { x = c 1 e 2 t + c 2 t e 2 t + c 3 e t y = c 1 e 2 t + c 3 e t z = c 2 t e 2 t + c 3 e t \begin{bmatrix}x \\ y \\ z \end{bmatrix}=c_1e^{2t} \vec n_1+ c_2te^{2t} \vec n_2+ c_3e^{t} \vec n_3\\
\begin{cases}
x=c_1e^{2t} + c_2te^{2t} + c_3e^{t}\\
y=c_1e^{2t} + c_3e^{t}\\
z=c_2te^{2t} + c_3e^{t}\\
\end{cases} ⎣ ⎡ x y z ⎦ ⎤ = c 1 e 2 t n 1 + c 2 t e 2 t n 2 + c 3 e t n 3 ⎩ ⎨ ⎧ x = c 1 e 2 t + c 2 t e 2 t + c 3 e t y = c 1 e 2 t + c 3 e t z = c 2 t e 2 t + c 3 e t
Comments