Question #145342
ind the general solution of the given system.
dx /dt = 3x − y − z
dy /dt = x + y − z
dz /dt = x − y + z x(t), y(t), z(t) =
1
Expert's answer
2020-11-19T16:44:24-0500
SolutionSolution

In matrix from, the system is


ddt[xyz]=[311111111][xyz]\frac{d}{dt}\begin{bmatrix}x \\ y \\ z \end{bmatrix}=\begin{bmatrix}3 &-1 & -1 \\ 1 & 1 & -1 \\ 1 &-1 & 1 \end{bmatrix} \begin{bmatrix}x \\ y \\ z \end{bmatrix}

The coefficient matrix has eigenvalues λ\lambda such that

3λ1111λ1111λ=(λ2)2(λ1)=0    2(2),λ=1\begin{vmatrix} 3-\lambda & -1 & -1 \\ 1 & 1-\lambda & -1 \\ 1 & -1 & 1-\lambda \\ \end{vmatrix} =-(\lambda-2)^2(\lambda-1)=0 \implies 2_{(2)}, \lambda=1

(where the subscript denotes multiplicity of the eigenvalue).

λ=2\lambda =2 :

[111111111]n1=0    n1,1n1,2n1,3=0    n1,1=n1,2+n1,3\begin{bmatrix}1 &-1 & -1 \\ 1 & -1 & -1 \\ 1 &-1 & -1 \end{bmatrix} \vec n_1=\vec 0\\ \implies n_{1,1}-n_{1,2}-n_{1,3}=0 \implies n_{1,1}=n_{1,2}+n_{1,3}

By picking n1,1=1n_{1,1}=1 , we can then set n1,2=1n_{1,2}=1 and n1,3=0n_{1,3}=0 , and vice versa, to find two corresponding eigenvectors,

n1=[110],n2=[101]\vec n_1=\begin{bmatrix}1 \\ 1 \\ 0 \end{bmatrix}, \vec n_2=\begin{bmatrix}1 \\ 0 \\ 1 \end{bmatrix}

λ=1\lambda=1 :

[211101110]n3=0    2n3,1n3,2n3,3=0    2n3,1=n3,2+n3,3\begin{bmatrix}2 &-1 & -1 \\ 1 & 0 & -1 \\ 1 &-1 & 0 \end{bmatrix} \vec n_3=\vec 0\\ \implies 2n_{3,1}-n_{3,2}-n_{3,3}=0 \implies 2n_{3,1}=n_{3,2}+n_{3,3}

We obtain n3\vec n_3 independent of n1,n2\vec n_1, \vec n_2 by picking n3,2=n3,3=1\vec n_{3,2}=\vec n_{3,3}=1, so that the third corresponding eigenvector is;

n3=[111]\vec n_3=\begin{bmatrix}1 \\ 1 \\ 1 \end{bmatrix}

Then the general solution to this system is

[xyz]=c1e2tn1+c2te2tn2+c3etn3{x=c1e2t+c2te2t+c3ety=c1e2t+c3etz=c2te2t+c3et\begin{bmatrix}x \\ y \\ z \end{bmatrix}=c_1e^{2t} \vec n_1+ c_2te^{2t} \vec n_2+ c_3e^{t} \vec n_3\\ \begin{cases} x=c_1e^{2t} + c_2te^{2t} + c_3e^{t}\\ y=c_1e^{2t} + c_3e^{t}\\ z=c_2te^{2t} + c_3e^{t}\\ \end{cases}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS