SolutionIn matrix from, the system is
dtd⎣⎡xyz⎦⎤=⎣⎡311−11−1−1−11⎦⎤⎣⎡xyz⎦⎤
The coefficient matrix has eigenvalues λ such that
∣∣3−λ11−11−λ−1−1−11−λ∣∣=−(λ−2)2(λ−1)=0⟹2(2),λ=1
(where the subscript denotes multiplicity of the eigenvalue).
λ=2 :
⎣⎡111−1−1−1−1−1−1⎦⎤n1=0⟹n1,1−n1,2−n1,3=0⟹n1,1=n1,2+n1,3
By picking n1,1=1 , we can then set n1,2=1 and n1,3=0 , and vice versa, to find two corresponding eigenvectors,
n1=⎣⎡110⎦⎤,n2=⎣⎡101⎦⎤
λ=1 :
⎣⎡211−10−1−1−10⎦⎤n3=0⟹2n3,1−n3,2−n3,3=0⟹2n3,1=n3,2+n3,3
We obtain n3 independent of n1,n2 by picking n3,2=n3,3=1, so that the third corresponding eigenvector is;
n3=⎣⎡111⎦⎤
Then the general solution to this system is
⎣⎡xyz⎦⎤=c1e2tn1+c2te2tn2+c3etn3⎩⎨⎧x=c1e2t+c2te2t+c3ety=c1e2t+c3etz=c2te2t+c3et
Comments