xp2+2yp+x=02y=−xp−xp2dydx=−p−1p−xdpdx+xp2dpdx3p2+1p=x(1−p2)p2dpdx(1−p2)p(3p2+1)dp=dxx∫(1−p2)p(3p2+1)dp=∫dxxlnp−23ln(3p2+1)=lnxp9p4+6p2+13=x9x3p4−p3+6x3p2+x3=0xp^2+2yp+x = 0\\ 2y = -xp - \dfrac{x}{p}\\ 2\dfrac{dy}{dx} = -p -\dfrac{1}{p} -x\dfrac{dp}{dx}+\dfrac{x}{p^2}\dfrac{dp}{dx}\\ \dfrac{3p^2+1}{p} = \dfrac{x(1-p^2)}{p^2}\dfrac{dp}{dx}\\ \dfrac{(1-p^2)}{p(3p^2+1)}dp = \dfrac{dx}{x}\\ \int \dfrac{(1-p^2)}{p(3p^2+1)}dp =\int \dfrac{dx}{x}\\ lnp -\dfrac{2}{3}ln(3p^2+1) = lnx\\ \dfrac{p}{\sqrt[3]{9p^4+6p^2+1}} = x\\ 9x^3p^4-p^3+6x^3p^2+x^3=0xp2+2yp+x=02y=−xp−px2dxdy=−p−p1−xdxdp+p2xdxdpp3p2+1=p2x(1−p2)dxdpp(3p2+1)(1−p2)dp=xdx∫p(3p2+1)(1−p2)dp=∫xdxlnp−32ln(3p2+1)=lnx39p4+6p2+1p=x9x3p4−p3+6x3p2+x3=0
is an implicit solution of the question because it is impossible to express p straightforward in terms of y.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments