x2y'' +xy' - y=x2ex
homogeneous equation:
x2y'' +xy' - y=0
It can be noted that one of the solutions of the homogeneous equation is
y1=x
Find the second independent solution
according to the Liouville-Ostrogradsky formula:
"W_{y_1y_2}=\\begin{vmatrix}\n y_1 & y_2 \\\\ \n y_1' & y_2' \n\\end{vmatrix} =C_1e^{-\\int{\\frac{a_1(x)}{a_2(x)}}}"
"y_2'y_1 - y_2y_1'=C_1e^{-\\int{\\frac{-x}{x^2}dx}}= C_1e^{lnx}=C_1x"
"\\frac{y_2'y_1-y_2y_1'}{y_1^2}=\\frac{C_1x}{y_1^2}=\\frac{C_1x}{x^2}=\\frac{C_1}{x}"
"(\\frac{y_2}{y_1})'=\\frac{C_1}{x}"
"\\frac{y_2}{y_1}=C_1ln(x)+C_2"
y2= xC1ln(x)+xC2
Common solution:
y0(x)= xC1ln(x) +xC2
system of equations:
"xC_1'ln(x) + xC_2'=0"
"C_1'(xln(x))' + C_2'(x)'=e^x"
C2'= -C1ln(x)
C1'(ln(x)+1) + C2'= ex
C1'(ln(x) +1) - C1'ln(x) = ex
C1' =ex
C2'= - exln(x)=-1
C1=ex + A1
C2=-x+A2
y(x)= C1(x)xln(x) + C2x= (ex+A1)xln(x) + (-x+A2)x=x+A1xln(x) - x2 +xA2
Comments
Leave a comment