x2 y'' +xy' - y=x2 ex
homogeneous equation:
x2y'' +xy' - y=0
It can be noted that one of the solutions of the homogeneous equation is y1 =x
Find the second independent solution
according to the Liouville-Ostrogradsky formula:W y 1 y 2 = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = C 1 e − ∫ a 1 ( x ) a 2 ( x ) W_{y_1y_2}=\begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix} =C_1e^{-\int{\frac{a_1(x)}{a_2(x)}}} W y 1 y 2 = ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = C 1 e − ∫ a 2 ( x ) a 1 ( x )
y 2 ′ y 1 − y 2 y 1 ′ = C 1 e − ∫ − x x 2 d x = C 1 e l n x = C 1 x y_2'y_1 - y_2y_1'=C_1e^{-\int{\frac{-x}{x^2}dx}}= C_1e^{lnx}=C_1x y 2 ′ y 1 − y 2 y 1 ′ = C 1 e − ∫ x 2 − x d x = C 1 e l n x = C 1 x
y 2 ′ y 1 − y 2 y 1 ′ y 1 2 = C 1 x y 1 2 = C 1 x x 2 = C 1 x \frac{y_2'y_1-y_2y_1'}{y_1^2}=\frac{C_1x}{y_1^2}=\frac{C_1x}{x^2}=\frac{C_1}{x} y 1 2 y 2 ′ y 1 − y 2 y 1 ′ = y 1 2 C 1 x = x 2 C 1 x = x C 1
( y 2 y 1 ) ′ = C 1 x (\frac{y_2}{y_1})'=\frac{C_1}{x} ( y 1 y 2 ) ′ = x C 1
y 2 y 1 = C 1 l n ( x ) + C 2 \frac{y_2}{y_1}=C_1ln(x)+C_2 y 1 y 2 = C 1 l n ( x ) + C 2
y2 = xC1 ln(x)+xC2
Common solution:
y0 (x)= xC1 ln(x) +xC2
system of equations :x C 1 ′ l n ( x ) + x C 2 ′ = 0 xC_1'ln(x) + xC_2'=0 x C 1 ′ l n ( x ) + x C 2 ′ = 0
C 1 ′ ( x l n ( x ) ) ′ + C 2 ′ ( x ) ′ = e x C_1'(xln(x))' + C_2'(x)'=e^x C 1 ′ ( x l n ( x ) ) ′ + C 2 ′ ( x ) ′ = e x
C2 '= -C1 ln(x)
C1 '(ln(x)+1) + C2 '= ex
C1 '(ln(x) +1) - C1 'ln(x) = ex
C1 ' =ex
C2 '= - ex ln(x)=-1
C1 =ex + A1
C2 =-x+A2
y(x)= C1 (x)xln(x) + C2 x= (ex +A1 )xln(x) + (-x+A2 )x=x+A1 xln(x) - x2 +xA2
Comments