We have a quasilinear first-order PDE.
p = ∂ z ∂ x , q = ∂ z ∂ y . p=\frac{\partial z}{\partial x},\ q=\frac{\partial z}{\partial y}. p = ∂ x ∂ z , q = ∂ y ∂ z .
Characteristic system of the equation:
d x 3 x + y − z = d y x + y − z = d z 2 ( z − y ) \frac{dx}{3x+y-z}=\frac{dy}{x+y-z}=\frac{dz}{2(z-y)} 3 x + y − z d x = x + y − z d y = 2 ( z − y ) d z
We will find two independent particular solutions of this system.
Each ratio is equal to − d x + 3 d y + d z 0 . \frac{-dx+3dy+dz}{0}. 0 − d x + 3 d y + d z . So − d x + 3 d y + d z = 0. -dx+3dy+dz=0. − d x + 3 d y + d z = 0. Then x − 3 y − z = C 1 is the first solution of the system . x-3y-z=C_1\text{ is the first solution of the system}. x − 3 y − z = C 1 is the first solution of the system .
Each ratio is equal to d x − d y + d z 2 x − 2 y + 2 z = d x + d y − d z 4 x + 4 y − 4 z . \frac{dx-dy+dz}{2x-2y+2z}=\frac{dx+dy-dz}{4x+4y-4z}. 2 x − 2 y + 2 z d x − d y + d z = 4 x + 4 y − 4 z d x + d y − d z .
d ( x − y + z ) x − y + z = d ( x + y − z ) 2 ( x + y − z ) . \frac{d(x-y+z)}{x-y+z}=\frac{d(x+y-z)}{2(x+y-z)}. x − y + z d ( x − y + z ) = 2 ( x + y − z ) d ( x + y − z ) .
On integrating both sides we get:
ln ( x − y + z ) = 1 2 ln ( x + y − z ) + ln C 2 . x − y + z x + y − z = C 2 is the second solution of the system . \ln (x-y+z)=\frac{1}{2}\ln (x+y-z)+\ln C_2.\\
\frac{x-y+z}{\sqrt{x+y-z}}=C_2\text{ is the second solution of the system}. ln ( x − y + z ) = 2 1 ln ( x + y − z ) + ln C 2 . x + y − z x − y + z = C 2 is the second solution of the system .
Then the general solution of our equation can be written as
Φ ( x − 3 y − z ; x − y + z x + y − z ) = 0 \Phi(x-3y-z; \frac{x-y+z}{\sqrt{x+y-z}})=0 Φ ( x − 3 y − z ; x + y − z x − y + z ) = 0
where Φ \Phi Φ is an arbitrary function of two variables.
Comments