Let us solve the equation (3xy+3y−4)dx+(x+1)2dy=0( 3xy + 3y - 4)dx + (x + 1)^2dy = 0(3xy+3y−4)dx+(x+1)2dy=0:
3xy+3y−4+(x+1)2y′=03xy + 3y - 4 + (x + 1)^2y' = 03xy+3y−4+(x+1)2y′=0
3(x+1)y+(x+1)2y′=43(x + 1)y + (x + 1)^2y' = 43(x+1)y+(x+1)2y′=4
Multiply both parts of the differential equation by x+1:x+1:x+1:
3(x+1)2y+(x+1)3y′=4(x+1)3(x + 1)^2y + (x + 1)^3y' = 4(x+1)3(x+1)2y+(x+1)3y′=4(x+1)
((x+1)3y)′=4x+4((x + 1)^3y)' = 4x+4((x+1)3y)′=4x+4
Therefore, we have the following solution:
(x+1)3y=2x2+4x+C(x + 1)^3y = 2x^2+4x+C(x+1)3y=2x2+4x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments