y′=cscx−ycotxy′=sinx1−ysinxcosxy=u(x)∗v(x)y′=u′v+uv′u′v+uv′+uvsinxcosx=sinx1 u′v+u(v′+vsinxcosx)=sinx1 v′+vsinxcosx=0 dxdv=−vsinxcosx vdv=−cotxdx ∫vdv=−∫cotxdxlnv=−ln(sinx)v=sinx1=cscxu′∗sinx1=sinx1dxdu=1 du=dx ∫du=∫dx u=x+C, C−constanty=u∗v=csc∗(x+C)=Ccscx+xcscxanswer:y=Ccscx+xcscx
Comments