Question #144878
y’ = Csc x -yCot x
1
Expert's answer
2020-11-17T17:44:05-0500

y=cscxycotxy=1sinxycosxsinxy=u(x)v(x)y=uv+uvuv+uv+uvcosxsinx=1sinx uv+u(v+vcosxsinx)=1sinx v+vcosxsinx=0 dvdx=vcosxsinx dvv=cotxdx dvv=cotxdxlnv=ln(sinx)v=1sinx=cscxu1sinx=1sinxdudx=1 du=dx du=dx u=x+C, Cconstanty=uv=csc(x+C)=Ccscx+xcscxanswer:y=Ccscx+xcscxy' = csc x - ycotx\\ y' = \dfrac{1}{sinx} - y\dfrac{cosx}{sinx}\\ y = u(x)*v(x)\\ y' = u'v+uv'\\ u'v+uv'+uv\dfrac{cosx}{sinx} = \dfrac{1}{sinx}\\ \space\\ u'v +u(v'+v\dfrac{cosx}{sinx}) =\dfrac{1}{sinx}\\ \space\\ v' +v\dfrac{cosx}{sinx}=0\\ \space\\ \dfrac{dv}{dx} =-v\dfrac{cosx}{sinx}\\ \space\\ \dfrac{dv}{v} = -cotxdx\\ \space\\ \int \dfrac{dv}{v} =- \int cotxdx\\ ln v = -ln(sinx)\\ v = \dfrac{1}{sinx} = cscx\\ u' * \dfrac{1}{sinx} = \dfrac{1}{sinx}\\ \dfrac{du}{dx} = 1\\ \space\\ du = dx\\ \space\\ \int du =\int dx\\ \space\\ u = x +C, \space C-constant\\ y = u*v =csc*(x+C) = Ccscx+xcscx\\ answer: y = Ccscx+xcscx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS