The differential equation satisfied by a beam uniformly loaded at one end that is fixed and the other end 8s subjected to a tensile force P, is given by EI.d^2y/dx^2= P.y- 1/2(W.x^2),where E,I,P,W are constants. Show that the elastic curve for the beam under the conditions y=0, dy/dx=0 at x=0, is given by y(x)=(W/P^2)[1-cosh(vx)]+ (W/2P)(x^2+2/n^2),where EI= P/n^2
1
Expert's answer
2020-11-13T15:55:48-0500
Consider the differential equationay"=py−bx2(1)ay"−py=−bx2The auxiliary equation isak2−p=0k2=apk=±apSincep,a>0y=CF=Acosh(apx)+Bsinh(apx)ay"−py=−bx2y=PI=lx2+mx+ny"=2l⟹2la−p(lx2+mx+n)=−bx2pl=b,l=pbpm=0,m=02la−pn=0,n=p2la=p22ab∴y=PI=pbx2+p22aby=CF+PI∴y=Acosh(apx)+Bsinh(apx)+pbx2+p22ab0=A+p22abA=−p22aby′=Aapsinh(apx)+Bapcosh(apx)+p2bxy′(0)=0=Bap∴B=0y=−p22abcosh(apx)+pbx2+p22aby=p22ab(1−cosh(apx))+pbx2Comparing the DE in(1)with the given DE.ay"=py−bx2y"=P.y−1/2(W.x2)b=2W,p=P,a=El,v=aPy=2P22El.W(1−cosh(vx))+2PWx2∴y=P2El.W(1−cosh(vx))+2PWx2
Comments