Question #143650
The differential equation satisfied by a beam uniformly loaded at one end that is fixed and the other end 8s subjected to a tensile force P, is given by EI.d^2y/dx^2= P.y- 1/2(W.x^2),where E,I,P,W are constants. Show that the elastic curve for the beam under the conditions y=0, dy/dx=0 at x=0, is given by y(x)=(W/P^2)[1-cosh(vx)]+ (W/2P)(x^2+2/n^2),where EI= P/n^2
1
Expert's answer
2020-11-13T15:55:48-0500

Consider the differential equationay"=pybx2(1)ay"py=bx2The auxiliary equation isak2p=0k2=pak=±paSincep,a>0y=CF=Acosh(pax)+Bsinh(pax)ay"py=bx2y=PI=lx2+mx+ny"=2l    2lap(lx2+mx+n)=bx2pl=b,l=bppm=0,m=02lapn=0,n=2lap=2abp2y=PI=bpx2+2abp2y=CF+PIy=Acosh(pax)+Bsinh(pax)+bpx2+2abp20=A+2abp2A=2abp2y=Apasinh(pax)+Bpacosh(pax)+2bxpy(0)=0=BpaB=0y=2abp2cosh(pax)+bpx2+2abp2y=2abp2(1cosh(pax))+bpx2Comparing the DE in(1)with the given DE.ay"=pybx2y"=P.y1/2(W.x2)b=W2,p=P,a=El,v=Pay=2El.W2P2(1cosh(vx))+W2Px2y=El.WP2(1cosh(vx))+W2Px2\displaystyle \textsf{Consider the differential equation}\\ ay" = py- bx^2\hspace{1cm}(1)\\ ay" - py = -bx^2\\ \textsf{The auxiliary equation is}\\ ak^2 - p = 0\\ k^2 = \frac{p}{a}\\ k = \pm\sqrt{\frac{p}{a}}\\ \textsf{Since}\,\, p, a > 0\\ y = CF = A\cosh\left(\sqrt{\frac{p}{a}}x\right) + B\sinh\left(\sqrt{\frac{p}{a}}x\right)\\ ay" - py = -bx^2\\ y = PI = lx^2 + mx + n\\ y" = 2l\\ \implies 2la - p(lx^2 + mx + n) = -bx^2\\ pl = b, l = \frac{b}{p}\\ pm = 0, m = 0\\ 2la - pn = 0, \\ n = \frac{2la}{p} = \frac{2ab}{p^2}\\ \therefore y = PI = \frac{b}{p}x^2 + \frac{2ab}{p^2}\\ y = CF + PI\\ \therefore y = A\cosh\left(\sqrt{\frac{p}{a}}x\right) + B\sinh\left(\sqrt{\frac{p}{a}}x\right) + \frac{b}{p}x^2 + \frac{2ab}{p^2}\\ 0 = A + \frac{2ab}{p^2}\\ A = -\frac{2ab}{p^2}\\ y' = A\sqrt{\frac{p}{a}}\sinh\left(\sqrt{\frac{p}{a}}x\right) + B\sqrt{\frac{p}{a}}\cosh\left(\sqrt{\frac{p}{a}}x\right) + \frac{2bx}{p}\\ y'(0) = 0 = B\sqrt{\frac{p}{a}}\\ \therefore B = 0\\ y = -\frac{2ab}{p^2}\cosh\left(\sqrt{\frac{p}{a}}x\right)+ \frac{b}{p}x^2 + \frac{2ab}{p^2} \\ y = \frac{2ab}{p^2}\left(1 - \cosh\left(\sqrt{\frac{p}{a}}x\right)\right) + \frac{b}{p}x^2 \\ \textsf{Comparing the DE in}\, (1)\, \, \textsf{with the given DE.}\\ ay" = py- bx^2\\ y"= P.y- 1/2(W.x^2)\\ b = \frac{W}{2}, p = P, a = El, v = \sqrt{\frac{P}{a}}\\ y = \frac{2El.W}{2P^2}\left(1 - \cosh(vx)\right) + \frac{W}{2P}x^2 \\ \therefore y = \frac{El.W}{P^2}\left(1 - \cosh(vx)\right) + \frac{W}{2P}x^2\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS