Question #145793
Check the condition of integrability & solve

yzdx + 2xzdy − 3xydz = 0.
1
Expert's answer
2020-11-23T18:55:21-0500

Let us denote U=yzi+2xzj3xyk.U=yz\cdot i + 2xz\cdot j − 3xy\cdot k. Then


curl U=ijkxyzyz2xz3xy=(3x2x)i(3yy)j+(2zz)k=curl\ U=\left|\begin{array}{ccc} i & j & k \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ yz & 2xz & − 3xy \end{array}\right|=(-3x-2x)i-(-3y-y)j+(2z-z)k=

=5xi+4yj+zk=-5x\cdot i +4y\cdot j+z\cdot k


Since the scalar product UcurlU=(yzi+2xzj3xyk)(5xi+4yj+zk)=U\cdot curl U=(yz\cdot i + 2xz\cdot j − 3xy\cdot k)\cdot(-5x\cdot i +4y\cdot j+z\cdot k)=


5xyz+8xyz3xyz=0-5xyz+8xyz-3xyz=0, we conclude that yzdx+2xzdy3xydz=0yzdx + 2xzdy − 3xydz = 0 is integrable.


Let us divide both part of the equation yzdx+2xzdy3xydz=0yzdx + 2xzdy − 3xydz = 0 by xyzxyz:


dxx+2dyy3dzz=0\frac{dx}{x}+2\frac{dy}{y}-3\frac{dz}{z}=0


It folows that dxx+2dyy3dzz=0\int\frac{dx}{x}+2\int\frac{dy}{y}-3\int\frac{dz}{z}=0 and therefore, lnx+2lny3lnz=lnC\ln |x|+2\ln|y|-3\ln|z|=\ln|C|.

Then lnxy2=lnCz3\ln|xy^2|=\ln|Cz^3|. Consequently, the solution is the following:


xy2=Cz3xy^2=Cz^3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS