Let us denote U = y z ⋅ i + 2 x z ⋅ j − 3 x y ⋅ k . U=yz\cdot i + 2xz\cdot j − 3xy\cdot k. U = yz ⋅ i + 2 x z ⋅ j − 3 x y ⋅ k . Then
c u r l U = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z y z 2 x z − 3 x y ∣ = ( − 3 x − 2 x ) i − ( − 3 y − y ) j + ( 2 z − z ) k = curl\ U=\left|\begin{array}{ccc} i & j & k \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ yz & 2xz & − 3xy \end{array}\right|=(-3x-2x)i-(-3y-y)j+(2z-z)k= c u r l U = ∣ ∣ i ∂ x ∂ yz j ∂ y ∂ 2 x z k ∂ z ∂ − 3 x y ∣ ∣ = ( − 3 x − 2 x ) i − ( − 3 y − y ) j + ( 2 z − z ) k =
= − 5 x ⋅ i + 4 y ⋅ j + z ⋅ k =-5x\cdot i +4y\cdot j+z\cdot k = − 5 x ⋅ i + 4 y ⋅ j + z ⋅ k
Since the scalar product U ⋅ c u r l U = ( y z ⋅ i + 2 x z ⋅ j − 3 x y ⋅ k ) ⋅ ( − 5 x ⋅ i + 4 y ⋅ j + z ⋅ k ) = U\cdot curl U=(yz\cdot i + 2xz\cdot j − 3xy\cdot k)\cdot(-5x\cdot i +4y\cdot j+z\cdot k)= U ⋅ c u r l U = ( yz ⋅ i + 2 x z ⋅ j − 3 x y ⋅ k ) ⋅ ( − 5 x ⋅ i + 4 y ⋅ j + z ⋅ k ) =
− 5 x y z + 8 x y z − 3 x y z = 0 -5xyz+8xyz-3xyz=0 − 5 x yz + 8 x yz − 3 x yz = 0 , we conclude that y z d x + 2 x z d y − 3 x y d z = 0 yzdx + 2xzdy − 3xydz = 0 yz d x + 2 x z d y − 3 x y d z = 0 is integrable.
Let us divide both part of the equation y z d x + 2 x z d y − 3 x y d z = 0 yzdx + 2xzdy − 3xydz = 0 yz d x + 2 x z d y − 3 x y d z = 0 by x y z xyz x yz :
d x x + 2 d y y − 3 d z z = 0 \frac{dx}{x}+2\frac{dy}{y}-3\frac{dz}{z}=0 x d x + 2 y d y − 3 z d z = 0
It folows that ∫ d x x + 2 ∫ d y y − 3 ∫ d z z = 0 \int\frac{dx}{x}+2\int\frac{dy}{y}-3\int\frac{dz}{z}=0 ∫ x d x + 2 ∫ y d y − 3 ∫ z d z = 0 and therefore, ln ∣ x ∣ + 2 ln ∣ y ∣ − 3 ln ∣ z ∣ = ln ∣ C ∣ \ln |x|+2\ln|y|-3\ln|z|=\ln|C| ln ∣ x ∣ + 2 ln ∣ y ∣ − 3 ln ∣ z ∣ = ln ∣ C ∣ .
Then ln ∣ x y 2 ∣ = ln ∣ C z 3 ∣ \ln|xy^2|=\ln|Cz^3| ln ∣ x y 2 ∣ = ln ∣ C z 3 ∣ . Consequently, the solution is the following:
x y 2 = C z 3 xy^2=Cz^3 x y 2 = C z 3
Comments