Let us denote U=yz⋅i+2xz⋅j−3xy⋅k. Then
curl U=∣∣i∂x∂yzj∂y∂2xzk∂z∂−3xy∣∣=(−3x−2x)i−(−3y−y)j+(2z−z)k=
=−5x⋅i+4y⋅j+z⋅k
Since the scalar product U⋅curlU=(yz⋅i+2xz⋅j−3xy⋅k)⋅(−5x⋅i+4y⋅j+z⋅k)=
−5xyz+8xyz−3xyz=0, we conclude that yzdx+2xzdy−3xydz=0 is integrable.
Let us divide both part of the equation yzdx+2xzdy−3xydz=0 by xyz:
xdx+2ydy−3zdz=0
It folows that ∫xdx+2∫ydy−3∫zdz=0 and therefore, ln∣x∣+2ln∣y∣−3ln∣z∣=ln∣C∣.
Then ln∣xy2∣=ln∣Cz3∣. Consequently, the solution is the following:
xy2=Cz3
Comments