Question #146834
Uranium disintegrates at a rate3 proportional to the amount present at any instant. If m1 and m2 grams of uranium are present at time t1 and t2 , respectively, show that half life of uranium is (t1-t2)In2/In(m1/m2)
1
Expert's answer
2020-11-26T20:06:08-0500

ν=mM=NNA,\nu=\frac mM=\frac{N}{N_A}, mM.m \sim M.

mm0=2tT,\frac{m}{m_0}=2^{-\frac tT},

log2=tT,log_2=-\frac tT,

T=tlog2mm0=tlog2m0m=tln2lnm0m,T=-\frac{t}{log_2\frac{m}{m_0}}=\frac{t}{log_2\frac{m_0}{m}}=\frac{tln2}{ln\frac{m_0}{m}},

lnm0lnmtln2=1T,\frac{lnm_0-lnm}{tln2}=\frac 1T,

lnm0=tln2T+lnm=const,lnm_0=\frac{tln2}{T}+lnm=const,

t1ln2T+lnm1=t2ln2T+lnm2,\frac{t_1ln2}{T}+lnm_1=\frac{t_2ln2}{T}+lnm_2,

(t1t2)ln2T=lnm2lnm1,\frac{(t_1-t_2)ln2}{T}=lnm_2-lnm_1,

T=(t1t2)ln2lnm2m1.T=\frac{(t_1-t_2)ln2}{ln\frac{m_2}{m_1}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS