ν=mM=NNA,\nu=\frac mM=\frac{N}{N_A},ν=Mm=NAN, m∼M.m \sim M.m∼M.
mm0=2−tT,\frac{m}{m_0}=2^{-\frac tT},m0m=2−Tt,
log2=−tT,log_2=-\frac tT,log2=−Tt,
T=−tlog2mm0=tlog2m0m=tln2lnm0m,T=-\frac{t}{log_2\frac{m}{m_0}}=\frac{t}{log_2\frac{m_0}{m}}=\frac{tln2}{ln\frac{m_0}{m}},T=−log2m0mt=log2mm0t=lnmm0tln2,
lnm0−lnmtln2=1T,\frac{lnm_0-lnm}{tln2}=\frac 1T,tln2lnm0−lnm=T1,
lnm0=tln2T+lnm=const,lnm_0=\frac{tln2}{T}+lnm=const,lnm0=Ttln2+lnm=const,
t1ln2T+lnm1=t2ln2T+lnm2,\frac{t_1ln2}{T}+lnm_1=\frac{t_2ln2}{T}+lnm_2,Tt1ln2+lnm1=Tt2ln2+lnm2,
(t1−t2)ln2T=lnm2−lnm1,\frac{(t_1-t_2)ln2}{T}=lnm_2-lnm_1,T(t1−t2)ln2=lnm2−lnm1,
T=(t1−t2)ln2lnm2m1.T=\frac{(t_1-t_2)ln2}{ln\frac{m_2}{m_1}}.T=lnm1m2(t1−t2)ln2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments