a.
Let P denotes the population at time t years and P0 be the population at time t=0. Then,
dtdP∝P⟹dtdP=kP⟹PdP=kdt. where k is a constant.
Integrating both sides, we have;
∫PdP=∫kdt⟹lnP=kt+c⟹P=ekt+c⟹P=Aekt .
At time t=0,P=P0
⟹P0=Aek.0⟹A=P0⟹P=P0ekt
At time t=−10,P=70,000,000
⟹7×107=8×107e−10k⟹87=e−10k⟹k=−10ln87
At any time t, the population of the country will be P=P0ekt where P0=8×107 and k=−10ln87 .
b.
At the end of the next 10 years, t=10, the population will be approximately;
P=P0e10k⟹P=8×107×78⟹P=91,428,571.43≈9.143×107.
Comments