a.
Let "P" denotes the population at time "t" years and "P_0" be the population at time "t=0". Then,
"\\frac{dP}{dt}\\varpropto P \\implies \\frac{dP}{dt}=kP\\implies \\frac{dP}{P}=kdt." where "k" is a constant.
Integrating both sides, we have;
"\\int\\frac{dP}{P}= \\int kdt\\implies \\ln P= kt+c\\implies P= e^{kt+c}\\implies P= Ae^{kt}" .
At time "t=0, P=P_0"
"\\implies P_0=Ae^{k.0}\\implies A=P_0\\implies P=P_0e^{kt}"
At time "t=-10, P= 70,000,000"
"\\implies 7\\times10^7=8 \\times 10^7e^{-10k}\\implies \\frac{7}{8}=e^{-10k}\\\\\\implies k= \\frac{\\ln \\frac{7}{8}}{-10}"
At any time "t," the population of the country will be "P=P_0e^{kt}" where "P_0= 8 \\times 10^7" and "k= \\frac{\\ln \\frac{7}{8}}{-10}" .
b.
At the end of the next 10 years, "t=10," the population will be approximately;
"P=P_0e^{10k}\\implies P= 8 \\times 10^7 \\times \\frac{8}{7}\\\\\\implies P=91,428,571.43 \\approx9.143 \\times 10^7."
Comments
Leave a comment