SolutionIt's AE is D4−a4=0
∴ the auxiliary equation becomes (D2–a2)(D2+a2)=0⟹D2−a2=0 or D2+a2=0∴(D–a)(D+a)(D–ai)(D+ai)=0∴D=±a,and D=±ai
Hence the required solution is
C.F=[aeax+be−ax]+[ceiax+de−iax]C.F=[a2(cosh ax+sinh ax)]+[b2(cosh ax−sinh ax)]+[c2(cos ax−i sin ax)+d2(cos ax−sin ax)]C.F=[2a+bcos ax+2a−bsinh ax]+[2c+dcos ax+i2(c−d)sin ax]
Where C_1=\frac{a+b}{2},\ C_2=\frac{a-b}{2},\ C_3=\frac{c+d}{2},\ c_4=\frac{i(c-d)}{2},\
Its solution is
C.F=[C1 cosh ax+C2 sinh ax]+[C3 cos ax+C4 sin ax]−−−(i) And PI, for x4 is;
PI1=D4−a41 x4 Putting D4=a4 in f(D), then
PI1=01x4 ∴method fails
Then to find PI, put D4+a4 for f(D) and take out x4.
∴PI1=x4{D4−a4+a41}{1}⟹x4 D41{1}=x44!x4⟹4!x8−−−−−(ii)
Also, PI2 for sin bx is;
∴PI2=D4−a41 sin bx Put D4=D2⋅D2=(−b2)(−b2)
⟹(−b2)(−b2)−a41 sin bx=b4−a41 sin bx−−−(iii)
General Solution is;
G.S=C.F+PI1+PI2⟹[C1 cosh ax+C2 sinh ax]+[C3 cos ax+C4 sin ax]+4!x8+b4−a41 sin bx
Hence
G.S=[C1 cosh ax+C2 sinh ax]+[C3 cos ax+C4 sin ax]+4!x8+b4−a41 sin bx
Comments