Question #146832
Solve the differential equation:
(D^4-a^4)y=x^4+sinbx, where a and b are constants and D=d/dx
1
Expert's answer
2020-11-30T21:07:01-0500
SolutionSolution

It's AE is D4a4=0D^4-a^4=0

 the auxiliary equation becomes (D2a2)(D2+a2)=0    D2a2=0 or D2+a2=0(Da)(D+a)(Dai)(D+ai)=0D=±a,and D=±ai\therefore\ the\ auxiliary\ equation\ becomes\ (D^2 – a^2 ) (D^2 + a^2 ) = 0\\ \implies D^2-a^2=0\ or\ D^2+a^2=0\\ \therefore (D – a) (D + a) (D – ai) (D + ai) = 0\\ \therefore D = \pm a, and\ D=\pm ai


Hence the required solution is

C.F=[aeax+beax]+[ceiax+deiax]C.F=[a(cosh ax+sinh ax)2]+[b(cosh axsinh ax)2]+[c(cos axi sin ax)2+d(cos axsin ax)2]C.F=[a+b2cos ax+ab2sinh ax]+[c+d2cos ax+i(cd)2sin ax]C.F=[ae^{ax}+be^{-ax}]+[ce^{iax}+de^{-iax}]\\ C.F =[a \frac{(cosh\ ax+sinh\ ax)}{2}]+[b \frac{(cosh\ ax-sinh\ ax)}{2}]+[c \frac{(cos\ ax-i\ sin\ ax)}{2}+d \frac{(cos\ ax-sin\ ax)}{2}]\\ C.F=[\frac{a+b}{2}cos\ ax + \frac{a-b}{2}sinh\ ax]+[\frac{c+d}{2}cos\ ax + i\frac{(c-d)}{2}sin\ ax]


Where C_1=\frac{a+b}{2},\ C_2=\frac{a-b}{2},\ C_3=\frac{c+d}{2},\ c_4=\frac{i(c-d)}{2},\

Its solution is


C.F=[C1 cosh ax+C2 sinh ax]+[C3 cos ax+C4 sin ax](i)C.F=[C_1\ cosh\ ax +C_2\ sinh\ ax]+[C_3\ cos\ ax +C_4\ sin\ ax]---(i)

And PI, for x4x^4 is;


PI1=1D4a4 x4PI_1=\frac{1}{D^4-a^4}\ x^4

Putting D4=a4D^4=a^4 in f(D)f(D), then

PI1=10x4 method failsPI_1=\frac10 x^4\ \therefore method\ fails


Then to find PI, put D4+a4D^4+a^4 for f(D)f(D) and take out x4x^4.

PI1=x4{1D4a4+a4}{1}    x4 1D4{1}=x4x44!    x84!(ii)\therefore PI_1=x^4 \{\frac{1}{D^4-a^4+a^4}\}\{1\}\\ \implies x^4\ \frac{1}{D^4}\{1\}=x^4\frac{x^4}{4!} \implies \frac{x^8}{4!}-----(ii)


Also, PI2PI_2 for sin bxsin\ bx is;


PI2=1D4a4 sin bx\therefore PI_2=\frac{1}{D^4-a^4}\ sin\ bx\\

Put D4=D2D2=(b2)(b2)D^4=D^2 \cdot D^2 = (-b^2)(-b^2)

    1(b2)(b2)a4 sin bx=1b4a4 sin bx(iii)\implies\frac{1}{(-b^2)(-b^2)-a^4}\ sin\ bx = \frac{1}{b^4-a^4}\ sin\ bx ---(iii)


General Solution is;

G.S=C.F+PI1+PI2    [C1 cosh ax+C2 sinh ax]+[C3 cos ax+C4 sin ax]+x84!+1b4a4 sin bxG.S=C.F+PI_1+PI_2 \implies [C_1\ cosh\ ax +C_2\ sinh\ ax]+[C_3\ cos\ ax +C_4\ sin\ ax]+\frac{x^8}{4!}+\frac{1}{b^4-a^4}\ sin\ bx


Hence

G.S=[C1 cosh ax+C2 sinh ax]+[C3 cos ax+C4 sin ax]+x84!+1b4a4 sin bxG.S=[C_1\ cosh\ ax +C_2\ sinh\ ax]+[C_3\ cos\ ax +C_4\ sin\ ax]+\frac{x^8}{4!}+\frac{1}{b^4-a^4}\ sin\ bx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS