Question #137955
Classify the equation zxx + xzyy = 0 for x > 0 and reduce it to canonical form.
1
Expert's answer
2020-10-12T18:59:13-0400

 

zxx+xzyy=0z_{xx}+xz_{yy}=0

Comparing the given equation with the equation


Azxx+Bzxy+Czyy+Dzx+Ezy+Fz=G,Az_{xx}+Bz_{xy}+Cz_{yy}+Dz_x+Ez_y+Fz=G,

we have

A=1,B=0,C=x,D=0,E=0,F=0,G=0A=1, B=0, C=x, D=0, E=0, F=0, G=0

The discriminant is


B24AC=04(1)(x)=4x<0,x>0B^2-4AC=0-4(1)(x)=-4x<0, x>0

The given equation is elliptic for all x>0.x>0.


 The characteristic equations are given by 


dydx=BB24AC2A=4x2=ix\dfrac{dy}{dx}=\dfrac{B-\sqrt{B^2-4AC}}{2A}=\dfrac{-\sqrt{-4x}}{2}=-i\sqrt{x}

dydx=B+B24AC2A=4x2=ix\dfrac{dy}{dx}=\dfrac{B+\sqrt{B^2-4AC}}{2A}=\dfrac{\sqrt{-4x}}{2}=i\sqrt{x}

Integrating these two equations, we get 

iy+23xx=c1iy+\dfrac{2}{3}x\sqrt{x}=c_1 and iy+23xx=c2-iy+\dfrac{2}{3}x\sqrt{x}=c_2

Assume that


ξ=iy+23xx,η=iy+23xx\xi=iy+\dfrac{2}{3}x\sqrt{x}, \eta=-iy+\dfrac{2}{3}x\sqrt{x}

Introducing the transformations α=12(ξ+η)\alpha=\dfrac{1}{2}(\xi+\eta) and β=12i(ξη),\beta=\dfrac{1}{2i}(\xi-\eta), we obtain


α=12(iy+23xxiy+23xx)=23xx\alpha=\dfrac{1}{2}(iy+\dfrac{2}{3}x\sqrt{x}-iy+\dfrac{2}{3}x\sqrt{x})=\dfrac{2}{3}x\sqrt{x}

β=12i(iy+23xx+iy23xx)=y\beta=\dfrac{1}{2i}(iy+\dfrac{2}{3}x\sqrt{x}+iy-\dfrac{2}{3}x\sqrt{x})=y

The transformed equation is obtained by first computing


Aˉ=Aαx2+Bαxαy+Cαy2=x\bar{A}=A\alpha_{x}^2+B\alpha_{x}\alpha_{y}+C\alpha_{y}^2=x


Bˉ=3Aαxβx+B(αxβy+αyβx)+2Cαyβy=0\bar{B}=3A\alpha_{x}\beta_{x}+B(\alpha_{x}\beta_{y}+\alpha_{y}\beta_{x})+2C\alpha_{y}\beta_{y}=0

Cˉ=Aβx2+Bβxβy+Cβy2=x\bar{C}=A\beta_{x}^2+B\beta_{x}\beta_{y}+C\beta_{y}^2=x

Dˉ=Aαxx+Bαxy+Cαyy+Dαx+Eαy=12x\bar{D}=A\alpha_{xx}+B\alpha_{xy}+C\alpha_{yy}+D\alpha_{x}+E\alpha_{y}=\dfrac{1}{2\sqrt{x}}

Eˉ=Aβxx+Bβxy+Cβyy+Dβx+Eβy=0\bar{E}=A\beta_{xx}+B\beta_{xy}+C\beta_{yy}+D\beta_{x}+E\beta_{y}=0

Fˉ=F=0 and Gˉ=G=0\bar{F}=F=0\ and\ \bar{G}=G=0

Substitute in the following equation


Aˉzαα+Bˉzαβ+Cˉzββ+Dˉzα+Eˉzβ+Fˉz=Gˉ\bar{A}z_{\alpha\alpha}+\bar{B}z_{\alpha\beta}+\bar{C}z_{\beta\beta}+\bar{D}z_\alpha+\bar{E}z_\beta+\bar{F}z=\bar{G}

Thus, canonical form of the given partial differential equation is


xzαα+xzββ+12xzα=0xz_{\alpha\alpha}+xz_{\beta\beta}+\dfrac{1}{2\sqrt{x}}z_\alpha=0

Or


zαα+zββ=12xxzαz_{\alpha\alpha}+z_{\beta\beta}=-\dfrac{1}{2x\sqrt{x}}z_\alpha

zαα+zββ=13αzαz_{\alpha\alpha}+z_{\beta\beta}=-\dfrac{1}{3\alpha}z_\alpha


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS