Question #137596
2y^2+4x y dy/dx + xe^xy dy/dx + 2y dy/dx=-ye^xy
1
Expert's answer
2020-10-12T17:21:30-0400

2y2+4xydydx+xexydydx+2ydydx=yexy2y^2+4x y\frac{ dy}{dx} + xe^{xy} \frac{dy}{dx} + 2y\frac{ dy}{dx}=-ye^{xy}


(4xy+xexy+2y)dydx+2y2+yexy=0(4x y + xe^{xy} + 2y)\frac{ dy}{dx}+2y^2+ye^{xy}=0


(2y2+yexy)dx+(4xy+xexy+2y)dy=0(2y^2+ye^{xy})dx+(4x y + xe^{xy} + 2y) dy=0


x(4xy+xexy+2y)=4y+exy+xyexy\frac{\partial}{\partial x}(4x y + xe^{xy} + 2y)=4y+e^{xy}+xye^{xy}


y(2y2+yexy)=4y+exy+xyexy\frac{\partial}{\partial y}( 2y^2 + ye^{xy})=4y+e^{xy}+xye^{xy}


Since x(4xy+xexy+2y)=y(2y2+yexy)\frac{\partial}{\partial x}(4x y + xe^{xy} + 2y)=\frac{\partial}{\partial y}( 2y^2 + ye^{xy}), there exists a function U=U(x,y)U=U(x,y) such that dU=(4xy+xexy+2y)dy+(2y2+yexy)dx.dU=(4x y + xe^{xy} + 2y) dy+(2y^2+ye^{xy})dx. Therefore, Ux=2y2+yexy\frac{\partial U}{\partial x}=2y^2 + ye^{xy} and Uy=4xy+xexy+2y\frac{\partial U}{\partial y}=4x y + xe^{xy} + 2y.


U(x,y)=(2y2+yexy)dx=2y2x+exy+C(y)U(x,y)=\int(2y^2 + ye^{xy})dx=2y^2x+e^{xy}+C(y).


4xy+xexy+2y=Uy=y(2y2x+exy+C(y))=4xy+xexy+C(y)4xy + xe^{xy}+2y=\frac{\partial U}{\partial y}=\frac{\partial }{\partial y}(2y^2x+e^{xy}+C(y))=4xy+xe^{xy}+C'(y)


Therefore, C(y)=2yC'(y)=2y. So C(y)=y2+CC(y)=y^2+C.


We conclude that the general solution of the differential equation is the following:


2y2x+exy+y2=C2y^2x+e^{xy}+y^2=C




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS