2y2+4xydxdy+xexydxdy+2ydxdy=−yexy
(4xy+xexy+2y)dxdy+2y2+yexy=0
(2y2+yexy)dx+(4xy+xexy+2y)dy=0
∂x∂(4xy+xexy+2y)=4y+exy+xyexy
∂y∂(2y2+yexy)=4y+exy+xyexy
Since ∂x∂(4xy+xexy+2y)=∂y∂(2y2+yexy), there exists a function U=U(x,y) such that dU=(4xy+xexy+2y)dy+(2y2+yexy)dx. Therefore, ∂x∂U=2y2+yexy and ∂y∂U=4xy+xexy+2y.
U(x,y)=∫(2y2+yexy)dx=2y2x+exy+C(y).
4xy+xexy+2y=∂y∂U=∂y∂(2y2x+exy+C(y))=4xy+xexy+C′(y)
Therefore, C′(y)=2y. So C(y)=y2+C.
We conclude that the general solution of the differential equation is the following:
2y2x+exy+y2=C
Comments