y+y′=x+exy + y'=x+e^{x}y+y′=x+ex
y=uvy = uvy=uv
uv+u′v+uv′=(u+u′)v+uv′=x+exuv + u'v + uv' = (u + u')v + uv'= x + e^{x}uv+u′v+uv′=(u+u′)v+uv′=x+ex
u+u′=0u+u' = 0u+u′=0
u=e−xu = e^{-x}u=e−x
e−xv′=x+exe^{-x}v' = x+e^{x}e−xv′=x+ex
v′=xex+e2xv' = xe^{x} + e^{2x}v′=xex+e2x
v=∫(xex+e2x)dx=∫xexdx+e2x2=xex−ex+e2x2+cv = \int(xe^{x} + e^{2x})dx = \int xe^{x} dx + \frac{e^{2x}}{2} = xe^{x} - e^{x} + \frac{e^{2x}}{2} +cv=∫(xex+e2x)dx=∫xexdx+2e2x=xex−ex+2e2x+c
y=uv=e−x(xex−ex+e2x2+c)y = uv = e^{-x}(xe^{x} - e^{x} + \frac{e^{2x}}{2} +c )y=uv=e−x(xex−ex+2e2x+c)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments