Given Equation,
x′+x−y=e2tx'+x-y=e^{2t}x′+x−y=e2t
dxdt+x=y+e2t\frac{dx}{dt}+x=y+e^{2t}dtdx+x=y+e2t
Integrated factor, i.f=e∫1.dte^{\int 1.dt}e∫1.dt
=ete^tet
solution is given by,
x×i.f.=∫i.f.×(y+e2t)dt+cx\times i.f.=\int i.f.\times (y+e^{2t})dt+cx×i.f.=∫i.f.×(y+e2t)dt+c
xet=∫(y+e2t)etdt+cxe^t=\int(y+e^{2t})e^tdt+cxet=∫(y+e2t)etdt+c
xet=yet+e3t3+cxe^t=ye^t+\frac{e^{3t}}{3}+cxet=yet+3e3t+c
x=y+e2t3+ce−tx=y+\frac{e^{2t}}{3}+ce^{-t}x=y+3e2t+ce−t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments