Question #137455
Solve the following system of ODE

x'+x-y = e^2t
1
Expert's answer
2020-10-08T16:47:38-0400

Given Equation,

x+xy=e2tx'+x-y=e^{2t}


dxdt+x=y+e2t\frac{dx}{dt}+x=y+e^{2t}


Integrated factor, i.f=e1.dte^{\int 1.dt}

=ete^t

solution is given by,

x×i.f.=i.f.×(y+e2t)dt+cx\times i.f.=\int i.f.\times (y+e^{2t})dt+c


xet=(y+e2t)etdt+cxe^t=\int(y+e^{2t})e^tdt+c

xet=yet+e3t3+cxe^t=ye^t+\frac{e^{3t}}{3}+c


x=y+e2t3+cetx=y+\frac{e^{2t}}{3}+ce^{-t}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS