Question #137709
x^2y''-xy'=lnx
1
Expert's answer
2020-10-12T17:24:53-0400

x2yxy=lnxx^{2}y'' - xy' = lnx

y=p(x),y=p(x)y' = p(x), y'' = p'(x)

x2pxp=lnxx^{2}p' -xp = lnx

p=uv,p=uv+uvp = uv, p' = u'v + uv'

x2(uv+uv)xuv=lnxx^{2}(u'v + uv') - xuv = lnx

v(x2uxu)+x2uv=lnxv(x^{2}u' - xu) + x^{2}uv' = lnx

x2uxu=0,u=xx^{2}u' - xu = 0, u=x

x3v=lnxx^{3}v' = lnx

v=lnxx3dx=[x=ep,dx=epdp,lnx=p]=pe2pdp=12(pe2pe2pdp)=v = \int \frac{lnx}{x^{3}} dx = [x = e^{p}, dx = e^{p}dp, lnx = p] = \int pe^{-2p}dp = - \frac{1}{2}(pe^{-2p} -\int e^{-2p}dp)=

=12(pe2p+12e2p)=[x=ep]=12x2(lnx+12+c)=- \frac{1}{2}(pe^{-2p} +\frac{1}{2}e^{-2p}) = [x=e^{p}] = -\frac{1}{2x^{2}}(lnx+\frac{1}{2} + c)

y=p=uv=12x(lnx+12+c)y' = p = uv = -\frac{1}{2x}(lnx+\frac{1}{2} + c)

y=12x(lnx+12+c)dx=lnx2xdx14lnxc12lnx+c2=y = \int -\frac{1}{2x}(lnx+\frac{1}{2} + c)dx = \int -\frac{lnx}{2x} dx - \frac{1}{4}ln|x|- \frac{c_1}{2} ln|x| + c_2=

ln2x414lnxc12lnx+c2- \frac{ln^{2}|x|}{4} - \frac{1}{4}ln|x|- \frac{c_1}{2} ln|x| + c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS