x2y′′−xy′=lnx
y′=p(x),y′′=p′(x)
x2p′−xp=lnx
p=uv,p′=u′v+uv′
x2(u′v+uv′)−xuv=lnx
v(x2u′−xu)+x2uv′=lnx
x2u′−xu=0,u=x
x3v′=lnx
v=∫x3lnxdx=[x=ep,dx=epdp,lnx=p]=∫pe−2pdp=−21(pe−2p−∫e−2pdp)=
=−21(pe−2p+21e−2p)=[x=ep]=−2x21(lnx+21+c)
y′=p=uv=−2x1(lnx+21+c)
y=∫−2x1(lnx+21+c)dx=∫−2xlnxdx−41ln∣x∣−2c1ln∣x∣+c2=
−4ln2∣x∣−41ln∣x∣−2c1ln∣x∣+c2
Comments