Question #137430
Solve the partial differential equation r+ (a+b)s +abt = xy
1
Expert's answer
2020-10-12T18:11:30-0400

The given differential equation r+ (a+b)s +abt = xy is of the form

Rr + Ss + Tt= v where r,s,t ,v are the functions of x and y.

This type of D.E can be solved by using MONGE'S METHOD.

Monge's subsidiary equations are


1.R dpdy+Tdqdxv dxdy=02.R dy2S dxdy+T dx2=01. R\space dpdy+ T dqdx- v \space dxdy = 0\\2. R \space dy^2- S \space dxdy+ T \space dx^2=0


Now comparing with the given equation we have


R=1,S=(a+b),T=ab and v=xyR=1,S=(a+b),T=ab \space and \space v= xy

Therefore

dpdy+ab dqdxxy dxdy=0dpdy+ab \space dqdx - xy\space dxdy=0 ...............(1)

dy2(a+b) dxdy+ab dx2=0dy^2-(a+b)\space dxdy+ ab\space dx^2=0 .............(2)


From (2)

dy2(a+b) dxdy+ab dx2=0or,dy2a dxdyb dxdy+ab dx2=0or,dy(dyadx)bdx(dyadx)=0or,(dyadx)(dybdx)=0(dyadx)=0.........(3)    yax=A (after integration)......(4)or,(dybdx)=0..........(5)    ybx=B(after integration)........(6)whereA and Bare constants.dy^2-(a+b)\space dxdy+ ab\space dx^2=0\\or, dy^2-a \space dxdy -b\space dxdy+ ab\space dx^2=0\\or, dy(dy-adx)-bdx(dy -adx)=0\\or, (dy-adx)(dy-bdx)=0\\\therefore (dy-adx)=0 .........(3)\\ \implies y-ax = A \space (after \space integration) ......(4)\\or, (dy-bdx)=0..........(5)\\ \implies y-bx=B (after \space integration)........(6)\\where A \space and \space B are \space constants.

Now using equations (1) and (3) we get

dpdy+ab dqdxxy dxdy=0or,dpdy+b dqdyxy dxdy=0or,dy(dp+b dqxydx)=0As dy0(dp+b dqxydx)=0dpdy+ab \space dqdx - xy\space dxdy=0\\or, dpdy+b \space dqdy - xy\space dxdy=0\\or, dy(dp+b \space dq-xydx)=0\\ As \space dy\neq0 \\\therefore (dp+b \space dq-xydx)=0\\

Integrating we get

dp+bdqx(A+ax)dx=f1(yax)\int dp+b\int dq- \int x(A+ax)dx=f_1(y-ax) (because y =A+ax from (4) )

or,p+bqAx22ax33=f1(yax)or,p+bq(yax)x22ax33=f1(yax)or,p+bqx2y2+ax36=f1(yax)or, p+bq-A \frac{x^2}{2}-a\frac{x^3}{3}=f_1(y-ax)\\or, p+bq-(y-ax) \frac{x^2}{2}-a\frac{x^3}{3}=f_1(y-ax)\\or, p+bq- \frac{x^2y}{2}+\frac{ax^3}{6}=f_1(y-ax) .........................(7)


Integrating we get

dp+adqx(B+bx)dx=f2(ybx)\int dp+a\int dq- \int x(B+bx)dx=f_2(y-bx) (because y =B+bx from (6) )

or,p+aqBx22bx33=f2(ybx)or,p+aq(ybx)x22bx33=f2(ybx)or,p+aqx2y2+bx36=f2(ybx)or, p+aq-B \frac{x^2}{2}-b\frac{x^3}{3}=f_2(y-bx)\\or, p+aq-(y-bx) \frac{x^2}{2}-b\frac{x^3}{3}=f_2(y-bx)\\or, p+aq- \frac{x^2y}{2}+\frac{bx^3}{6}=f_2(y-bx) ................................(8)


Now solving equations (7) and (8) simultaneously we get

p+bqx2y2+ax36=f1(yax)p+aqx2y2+bx36=f2(ybx)p+bq- \frac{x^2y}{2}+\frac{ax^3}{6}=f_1(y-ax)\\p+aq- \frac{x^2y}{2}+\frac{bx^3}{6}=f_2(y-bx)


solving we get

p=x2y2x3(a+b)6+af1(yax)bf2(ybx)(ab) andq=x36+f2(ybx)f1(yax)(ab)p= \frac{x^2y}{2}-\frac{x^3(a+b)}{6}+\frac{af_1(y-ax)-bf_2(y-bx)}{(a-b)} \space and \\q = \frac{x^3}{6}+\frac{f_2(y-bx)-f_1(y-ax)}{(a-b)}


Now solution of the Given DE is obtained by substituting p and q in

dz=p dx+q dydz =p \space dx+q \space dy

dz={x2y2x3(a+b)6+af1(yax)bf2(ybx)(ab)} dx+{x36+f2(ybx)f1(yax)(ab)} dy\therefore dz = \{\frac{x^2y}{2}-\frac{x^3(a+b)}{6}+\frac{af_1(y-ax)-bf_2(y-bx)}{(a-b)} \} \space dx+ \{\frac{x^3}{6}+\frac{f_2(y-bx)-f_1(y-ax)}{(a-b)}\} \space dy

dz=x2y2dxx3(a+b)6dx+af1(yax)bf2(ybx)(ab)dx+x36dy+f2(ybx)f1(yax)(ab)dydz = \frac{x^2y}{2} dx-\frac{x^3(a+b)}{6} dx+\frac{af_1(y-ax)-bf_2(y-bx)}{(a-b)} dx+ \frac{x^3}{6}dy+\frac{f_2(y-bx)-f_1(y-ax)}{(a-b)}dy

dz=x2y2dx+x36dyx3(a+b)6dx+1(ab){af1(yax)dxbf2(ybx)dx+f2(ybx)dyf1(yax)dy}dz = \frac{x^2y}{2} dx + \frac{x^3}{6}dy-\frac{x^3(a+b)}{6} dx+\frac{1}{(a-b)}\{{af_1(y-ax)dx-bf_2(y-bx)dx}+f_2(y-bx)dy-f_1(y-ax)dy\}


dz=16(3x2ydx+x3dy)(a+b)6x3dx1(ab){f1(yax)(dyadx)f2(ybx)(dybdx)}dz = \frac{1}{6}(3x^2ydx+x^3dy)- \frac{(a+b)}{6}x^3dx-\frac{1}{(a-b)}\{f_1(y-ax)*(dy-adx)-f_2(y-bx)*(dy-bdx)\}

dz=16d(x3y)(a+b)6x3dx1(ab){f1(yax)(dyadx)f2(ybx)(dybdx)}dz = \frac{1}{6}d(x^3y) - \frac{(a+b)}{6}x^3dx - \frac{1}{(a-b)}\{f_1(y-ax)*(dy-adx)-f_2(y-bx)*(dy-bdx)\}

Now Integrating we get

dz=16d(x3y)(a+b)6x3dx1(ab){f1(yax)(dyadx)f2(ybx)(dybdx)}\int dz = \frac{1}{6}\int d(x^3y) - \frac{(a+b)}{6} \int x^3dx - \frac{1}{(a-b)}\{\int f_1(y-ax)*(dy-adx)- \int f_2(y-bx)*(dy-bdx)\}

z=x3y6(a+b)x4241(ab){ϕ1(yax)ϕ2(ybx)}z = \frac{x^3y}{6}-\frac{(a+b)x^4}{24}- \frac{1}{(a-b)}\{\phi_1(y-ax) -\phi_2(y-bx)\}


This is the complete solution









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS