The given differential equation r+ (a+b)s +abt = xy is of the form
Rr + Ss + Tt= v where r,s,t ,v are the functions of x and y.
This type of D.E can be solved by using MONGE'S METHOD.
Monge's subsidiary equations are
1.R dpdy+Tdqdx−v dxdy=02.R dy2−S dxdy+T dx2=0
Now comparing with the given equation we have
R=1,S=(a+b),T=ab and v=xy
Therefore
dpdy+ab dqdx−xy dxdy=0 ...............(1)
dy2−(a+b) dxdy+ab dx2=0 .............(2)
From (2)
dy2−(a+b) dxdy+ab dx2=0or,dy2−a dxdy−b dxdy+ab dx2=0or,dy(dy−adx)−bdx(dy−adx)=0or,(dy−adx)(dy−bdx)=0∴(dy−adx)=0.........(3)⟹y−ax=A (after integration)......(4)or,(dy−bdx)=0..........(5)⟹y−bx=B(after integration)........(6)whereA and Bare constants.
Now using equations (1) and (3) we get
dpdy+ab dqdx−xy dxdy=0or,dpdy+b dqdy−xy dxdy=0or,dy(dp+b dq−xydx)=0As dy=0∴(dp+b dq−xydx)=0
Integrating we get
∫dp+b∫dq−∫x(A+ax)dx=f1(y−ax) (because y =A+ax from (4) )
or,p+bq−A2x2−a3x3=f1(y−ax)or,p+bq−(y−ax)2x2−a3x3=f1(y−ax)or,p+bq−2x2y+6ax3=f1(y−ax) .........................(7)
Integrating we get
∫dp+a∫dq−∫x(B+bx)dx=f2(y−bx) (because y =B+bx from (6) )
or,p+aq−B2x2−b3x3=f2(y−bx)or,p+aq−(y−bx)2x2−b3x3=f2(y−bx)or,p+aq−2x2y+6bx3=f2(y−bx) ................................(8)
Now solving equations (7) and (8) simultaneously we get
p+bq−2x2y+6ax3=f1(y−ax)p+aq−2x2y+6bx3=f2(y−bx)
solving we get
p=2x2y−6x3(a+b)+(a−b)af1(y−ax)−bf2(y−bx) andq=6x3+(a−b)f2(y−bx)−f1(y−ax)
Now solution of the Given DE is obtained by substituting p and q in
dz=p dx+q dy
∴dz={2x2y−6x3(a+b)+(a−b)af1(y−ax)−bf2(y−bx)} dx+{6x3+(a−b)f2(y−bx)−f1(y−ax)} dy
dz=2x2ydx−6x3(a+b)dx+(a−b)af1(y−ax)−bf2(y−bx)dx+6x3dy+(a−b)f2(y−bx)−f1(y−ax)dy
dz=2x2ydx+6x3dy−6x3(a+b)dx+(a−b)1{af1(y−ax)dx−bf2(y−bx)dx+f2(y−bx)dy−f1(y−ax)dy}
dz=61(3x2ydx+x3dy)−6(a+b)x3dx−(a−b)1{f1(y−ax)∗(dy−adx)−f2(y−bx)∗(dy−bdx)}
dz=61d(x3y)−6(a+b)x3dx−(a−b)1{f1(y−ax)∗(dy−adx)−f2(y−bx)∗(dy−bdx)}
Now Integrating we get
∫dz=61∫d(x3y)−6(a+b)∫x3dx−(a−b)1{∫f1(y−ax)∗(dy−adx)−∫f2(y−bx)∗(dy−bdx)}
z=6x3y−24(a+b)x4−(a−b)1{ϕ1(y−ax)−ϕ2(y−bx)}
This is the complete solution
Comments