Question #137599
(4xy + 2x^2y) dx + (2x^2+3y^2) dy=0
1
Expert's answer
2020-10-13T17:18:12-0400

(4xy+2x2)dx+(2x2+3y2)dy=0M=(4xy+2x2),N=(2x2+3y2)My=My=4xNx=Nx=4xMy=Nx,so the differential equation is exact.f(x,y)=4xy+2x2dxf(x,y)=2x2y+2x33+f(y)f(x,y)=2x2+3y2dy=2x2y+y3+f(x)f(x,y)=2x2y+2x33+y3is the solution to the exactdifferential equation\displaystyle(4xy + 2x^2) \mathrm{d}x + (2x^2+3y^2) \mathrm{d}y=0\\ M = (4xy + 2x^2), N = (2x^2+3y^2)\\ M_y = \frac{\partial M}{\partial y} = 4x\\ N_x = \frac{\partial N}{\partial x} = 4x\\ M_y = N_x, \\ \textsf{so the differential equation is exact.}\\ f(x, y) = \int 4xy + 2x^2\, \mathrm{d}x\\ f(x, y) = 2x^2y + \frac{2x^3}{3} + f(y) \\ \begin{aligned} f(x, y) &= \int 2x^2+3y^2\, \mathrm{d}y \\&= 2x^2y + y^3 + f(x) \end{aligned}\\ \therefore f(x, y) = 2x^2y + \frac{2x^3}{3} + y^3 \\ \textsf{is the solution to the exact}\\\textsf{differential equation}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS