"\\displaystyle(4xy + 2x^2) \\mathrm{d}x + (2x^2+3y^2) \\mathrm{d}y=0\\\\\n\n\nM = (4xy + 2x^2), N = (2x^2+3y^2)\\\\\n\n\nM_y = \\frac{\\partial M}{\\partial y} = 4x\\\\\n\n \nN_x = \\frac{\\partial N}{\\partial x} = 4x\\\\\n\n\nM_y = N_x, \\\\ \\textsf{so the differential equation is exact.}\\\\\n\n\nf(x, y) = \\int 4xy + 2x^2\\, \\mathrm{d}x\\\\\n\n\nf(x, y) = 2x^2y + \\frac{2x^3}{3} + f(y) \\\\\n\n\\begin{aligned}\nf(x, y) &= \\int 2x^2+3y^2\\, \\mathrm{d}y\n\\\\&= 2x^2y + y^3 + f(x)\n\\end{aligned}\\\\\n\n\n\\therefore f(x, y) = 2x^2y + \\frac{2x^3}{3} + y^3 \\\\ \\textsf{is the solution to the exact}\\\\\\textsf{differential equation}"
Comments
Leave a comment