Solve the following equations using Wronskian’s method y ՜ ՜ -3y ՜ +2y = e^2t /(e^t +1).
1
Expert's answer
2020-10-13T17:04:44-0400
y′′−3y′+2y=et+1e2tThe solution to the above equation isy=yc+ypwhereycis the complementary factor andyp is the particular integralThe auxiliary equation ism2−3m+2=0(m−1)(m−2)∴m=0=1,2∴yc=C1et+C2e2tThe Wronskian of the two solutions isW(t)=∣∣etdtd(et)e2tdtd(e2t)∣∣=∣∣etete2t2e2t∣∣=2e3t−e3t=e3tOur particular solution will be given byyp=V1(t)et+V2(t)e2tWhereV1(t)=−∫W(t)r(t)e2tdtV1(t)=−∫et+1e2t⋅e3te2tdt=−∫et+1etdt=−ln(et+1)+CV2(t)=∫W(t)r(t)etdt=∫et+1e2t⋅e3tetdt=∫et+11dt=ln(et+1et)+CThe constant terms of the integration can beignored since we are trying to find a non-constantsolution to the differential equation∴y=yc+yp=C1et+C2e2t−ln(et+1)et+ln(et+1et)e2t
Comments