The Auxiliary equation is given by,
[(m−1)2(m+1)2]=0
The roots of the above equation are,
1,1,-1,-1
Therefore The complimentary function,
C.F.=(c1+c2x)ex+(c3+c4x)e−x ......(1)
Particular Integral, P.I.= 2(D2−1)2sin2x+(D2−1)2ex
= 2(−1−1)2sin2x+2(D2−1)×2Dxex
=2(−2)2sin2x+4(3D2−1)x2ex
=8sin2x+4(3.1−1)ex
=8sin2x+8ex
So complete solution=C.F+P.I.
y =(c1+c2x)ex+(c3+c4x)e−x+8sin2x+ex
Comments