Question #137294
[(D-1)^2.(D^2+1)^2]y=sin^2x/2+e^x
1
Expert's answer
2020-10-07T18:52:43-0400

The Auxiliary equation is given by,

[(m1)2(m+1)2]=0[(m-1)^2(m+1)^2]=0


The roots of the above equation are,

1,1,-1,-1

Therefore The complimentary function,

C.F.=(c1+c2x)ex+(c3+c4x)ex(c_1+c_2x)e^x+(c_3+c_4x)e^{-x} ......(1)

Particular Integral, P.I.= sin2x2(D21)2+ex(D21)2\frac{sin^2x}{2(D^2-1)^2}+\frac{e^x}{(D^2-1)^2}


= sin2x2(11)2+xex2(D21)×2D\frac{sin^2x}{2(-1-1)^2}+\frac{xe^x}{2(D^2-1)\times 2D}

=sin2x2(2)2+x2ex4(3D21)\frac{sin^2x}{2(-2)^2}+\frac{x^2e^x}{4(3D^2-1)}


=sin2x8+ex4(3.11)\frac{sin^2x}{8}+\frac{e^x}{4(3.1-1)}

=sin2x8+ex8\frac{sin^2x}{8}+\frac{e^x}{8}

So complete solution=C.F+P.I.

y =(c1+c2x)ex+(c3+c4x)ex+sin2x+ex8(c_1+c_2x)e^x+(c_3+c_4x)e^{-x}+\frac{sin^2x+e^x}{8}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS