Question #137385
Let G be a finite group and H be a subgroup of G with odd number of
elements such that (G:H) = 2. Show that the product of all elements of G (taken
in any order) does not belong to H.
1
Expert's answer
2020-10-08T12:31:02-0400

[G:H]=2, so G is of even order =2n say and H is a normal subgroup of G.  Let aGa\in G and o(a)=2.  Existence of a  is guaranteed by Cauchy’s Theorem. Then a doesn’t belong to H since the latter has odd order. Hence G=HaH.G=H\cup aH.  Now if we take product of all elements of G , then the product looks like product of elements of the form ah or h. Now

ah=(aha1)aah=(aha^{-1})a and ahiahj=(ahia1)(a2hja2)a2ah_{i} ah_{j}=(ah_{i}a^{-1})( a^{2} h_{j}a^{-2} )a^2 where each bracketed term belongs to H being normal. Hence the product can be written as hanha^{n}. Hence the product is in H implies that anH.a^n \in H.  But n is odd and order of a is 2. Hence an=a.a^n =a. This implies aHa\in H and hence we arrive at a contradiction.

Clarification through example:

h1h2(ah2)h_{1} h_2 (ah_2) h3(ah4)h5(ah1)h4(ah3)(ah5)=h1h2(ah2a1)h_3 (ah_4)h_5 (ah_1)h_4 (ah_3 )(ah_5)=h_1h_2(ah_2 a^{-1}) (ah3a1)(a2h4a2)(a2h5a2)(a3h1h4a3)(a4ha4)(a5h5a5)a5H.(ah_3a^{-1}) (a^2h_4 a^{-2})(a^2h_5 a^{-2})(a^3h_1h_4 a^{-3})(a^4 ha^{-4 })(a^5h_5 a^{-5})a^5 \in H. We note each bracketed term is in H and hence aH.a\in H.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS