Answer to Question #137385 in Differential Equations for Tajesh

Question #137385
Let G be a finite group and H be a subgroup of G with odd number of
elements such that (G:H) = 2. Show that the product of all elements of G (taken
in any order) does not belong to H.
1
Expert's answer
2020-10-08T12:31:02-0400

[G:H]=2, so G is of even order =2n say and H is a normal subgroup of G.  Let "a\\in G" and o(a)=2.  Existence of a  is guaranteed by Cauchy’s Theorem. Then a doesn’t belong to H since the latter has odd order. Hence "G=H\\cup aH."  Now if we take product of all elements of G , then the product looks like product of elements of the form ah or h. Now

"ah=(aha^{-1})a" and "ah_{i} ah_{j}=(ah_{i}a^{-1})( a^{2} h_{j}a^{-2} )a^2" where each bracketed term belongs to H being normal. Hence the product can be written as "ha^{n}". Hence the product is in H implies that "a^n \\in H."  But n is odd and order of a is 2. Hence "a^n =a." This implies "a\\in H" and hence we arrive at a contradiction.

Clarification through example:

"h_{1} h_2 (ah_2)" "h_3 (ah_4)h_5 (ah_1)h_4 (ah_3 )(ah_5)=h_1h_2(ah_2 a^{-1})" "(ah_3a^{-1}) (a^2h_4 a^{-2})(a^2h_5 a^{-2})(a^3h_1h_4 a^{-3})(a^4 ha^{-4 })(a^5h_5 a^{-5})a^5 \\in H." We note each bracketed term is in H and hence "a\\in H."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS