Question #137292
The solution of the differential equation
dy/dx=y with y(0)=0
exists,but is not unique.
true or false with complete explanation
1
Expert's answer
2020-10-07T14:47:21-0400

Given thatF(x,y)=dydx=y,F(x,y)is a continuous function.F(x,y)y=1.SinceF(x,y)andF(x,y)yare continuouson all points(x,y),so by uniquenesstheorem we can conclude that asolution exists in some open intervalcentered at0,and is unique in someinterval centered at0.By separatingvariables and integrating, we derivea solution to this differential equation.dyy=dxdyy=dxlny=x+Cy=eCexy=Aex(A=eC)y=Aexatx=0,y=A(0,A)is a point ony,whereAis any constant.The solution of this ODE passes through(0,A)and will never pass through(0,0)except whenA=0.SinceAcan assume any value,(0,A)is not unique.Therefore, we can conclude thatthe solution of the differential equationdydx=ywithy(0)=0exists, but is not unique.\displaystyle\textsf{Given that}\hspace{0.1cm} F(x, y) =\frac{\mathrm{d}y}{\mathrm{d}x} = y, \\F(x, y)\hspace{0.1cm}\textsf{is a continuous function.}\\ \displaystyle\frac{\partial F(x, y)}{\partial y} = 1. \\ \displaystyle\textsf{Since}\hspace{0.1cm}F(x,y) \hspace{0.1cm}\textsf{and}\hspace{0.1cm} \frac{\partial F(x, y)}{\partial y}\hspace{0.1cm} \textsf{are continuous}\\\textsf{on all points}\hspace{0.1cm} (x,y), \hspace{0.1cm}\textsf{so by uniqueness}\\\textsf{theorem we can conclude that a}\\\textsf{solution exists in some open interval}\\\textsf{centered at}\hspace{0.1cm}0,\hspace{0.1cm} \textsf{and is unique in some}\\\textsf{interval centered at}\hspace{0.1cm} 0. \hspace{0.1cm}\textsf{By separating}\\\textsf{variables and integrating, we derive}\\\textsf{a solution to this differential equation.}\\ \frac{\mathrm{d}y}{y} = \mathrm{d}x\\ \int\frac{\mathrm{d}y}{y} = \int \mathrm{d}x\\ \ln{y} = x + C\\ y = e^C \cdot e^x\\ y = Ae^x\hspace{0.3cm} (A = e^C)\\ y = Ae^x\\ \textsf{at}\hspace{0.1cm}x = 0, y = A\\ (0, A) \hspace{0.1cm}\textsf{is a point on}\hspace{0.1cm}y, \hspace{0.1cm}\textsf{where}\hspace{0.1cm}A \hspace{0.1cm}\textsf{is any constant.} \\ \textsf{The solution of this ODE passes through}\hspace{0.1cm} (0, A)\\\textsf{and will never pass through}\hspace{0.1cm}(0, 0) \hspace{0.1cm}\textsf{except when} \hspace{0.1cm} A = 0. \\ \textsf{Since}\hspace{0.1cm} A\hspace{0.1cm} \textsf{can assume any value,}\\\hspace{0.1cm}(0, A) \hspace{0.1cm}\textsf{is not unique.}\\ \textsf{Therefore, we can conclude that}\\ \textsf{the solution of the differential equation}\\ \frac{\mathrm{d}y}{\mathrm{d}x} =y \hspace{0.1cm}\textsf{with}\hspace{0.1cm} y(0)=0\hspace{0.1cm} \textsf{exists, but is not unique.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS