Case 1.Ify(t)=x(t)x′+x−y=e2tdtdx+x−y=e2tIfy=x=emt,dtdy=dtdx=memt⟹memt+emt−emt=e2tmemt=e2tmem=e2⟹mem=e2mcan only be solved for usingnumerical methods, suchas the LambertWfunction.m=Wn(e2),whereWn(z)is the LambertWfunction.m=Wn(e2)is the solutionto the equation.wheren∈Z∴y=x=eWn(e2)is a solution to the firstorder linear ODE.∀n∈Z.Case 2.Ify(t)is a multiple ofx(t)x′+x−y=e2tdtdx+x−y=e2tIfx=emt,y=memtdtdx=memt⟹memt+emt−memt=e2temt=e2t⟹m=2m=2is the only solutionto the equation.∴x=e2t,y=2e2tis a solution to the firstorder linear ODE.We now have two solutions forx&y.
Comments