Question #137432
y"-16y'+64y=-2x^2-5e^(5x)
1
Expert's answer
2020-10-08T15:58:37-0400

y16y+64y=2x25e5xy''-16y'+64y=-2x^2-5e^{5x}


Let us solve a characteristic equation:


k216k+64=0k^2-16k+64=0

(k8)2=0(k-8)^2=0

k1=k2=8k_1= k_2=8


The general solution is of the following form:

y(x)=e8x(C1+C2x)+yp(x),y(x)=e^{8x}(C_1+C_2 x)+y_p(x), where yp(x)y_p(x) is a particular solution, C1,C2C_1, C_2 are arbitrary constants.


The particular solution has the following form:

yp(x)=ax2+bx+c+de5xy_p(x)=ax^2+bx+c+de^{5x}, where a,b,ca,b,c and dd are constants.


yp=2ax+b+5de5xy_p'=2ax+b+5de^{5x}


yp=2a+25de5xy_p''=2a+25de^{5x}


Put founded derivatives in the differential equation:


2a+25de5x16(2ax+b+5de5x)+64(ax2+bx+c+de5x)=2x25e5x2a+25de^{5x}-16(2ax+b+5de^{5x})+64(ax^2+bx+c+de^{5x})=-2x^2-5e^{5x}


2a+25de5x32ax16b80de5x+64ax2+64bx+64c+64de5x=2x25e5x2a+25de^{5x}-32ax-16b-80de^{5x}+64ax^2+64bx+64c+64de^{5x}=-2x^2-5e^{5x}


64ax2+(32a+64b)x+(2a16b+64c)+9de5x=2x25e5x64ax^2+(-32a+64b)x+(2a-16b+64c)+9de^{5x}=-2x^2-5e^{5x}


Equating the corresponding coefficients, we obtain a system of equations:


{64a=232a+64b=02a16b+64c=09d=5\begin{cases} 64a=-2\\ -32a+64b=0\\2a-16b+64c=0\\9d=-5 \end{cases}


{a=132a=2b64c=2a+16b9d=5\begin{cases} a=-\frac{1}{32}\\ a=2b\\64c=-2a+16b\\9d=-5 \end{cases}


{a=132b=16464c=11614d=59\begin{cases} a=-\frac{1}{32}\\ b=-\frac{1}{64}\\64c=\frac{1}{16}-\frac{1}{4}\\d=-\frac{5}{9} \end{cases}


{a=132b=164c=31024d=59\begin{cases} a=-\frac{1}{32}\\ b=-\frac{1}{64}\\c=-\frac{3}{1024}\\d=-\frac{5}{9} \end{cases}


Finally, the solution of the differential equation is the following:


y(x)=e8x(C1+C2x)132x2164x3102459e5xy(x)=e^{8x}(C_1+C_2 x)-\frac{1}{32}x^2-\frac{1}{64}x-\frac{3}{1024}-\frac{5}{9}e^{5x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS