Question #137429
Solve the partial differential equation z (z^2-xy )(px-qy) = x^4
1
Expert's answer
2020-10-11T18:53:14-0400

Given Equation is z(z2xy)(pxqy)=x4z(z^2-xy) (px-qy) = x^4


then pxqy=x4z(z2xy)px-qy = \frac{x^4}{z(z^2-xy)}


comparing with general equation Pp+Qq=RPp+Qq=R


Then dxx=dyy=dzx4z(z2xy)\frac{dx}{x} = \frac{dy}{-y} = \frac{dz}{ \frac{x^4}{z(z^2-xy)}}


Taking first two terms,

dxx=dyy\frac{dx}{x} = \frac{dy}{-y}

Integrating both sides,

dxx=dyy\int \frac{dx}{x} = \int\frac{dy}{-y}

log(x)=log(y)+logClog (x) = -log(y) + logC

xy=Cxy = C (1)



Taking first and last term,

dxx=dzx4z(z2C)\frac{dx}{x} = \frac{dz}{ \frac{x^4}{z(z^2-C)}}


Integrating both sides, x3dx=z(z2C)dz\int x^3{dx} =\int z(z^2-C){dz}


x4=z42z2C+C=z42xyz2+Cx^4 = z^4-2z^2C + C' = z^4-2xyz^2 + C'

x4z4+2xyz2=Cx^4 -z^4+2xyz^2=C' (2)



So required solution is

f(xy,x4z4+2xyz2)=0f(xy,x^4-z^4+2xyz^2) = 0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS